2019
DOI: 10.48550/arxiv.1910.12109
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Graph classes with linear Ramsey numbers

Abstract: The Ramsey number R X (p, q) for a class of graphs X is the minimum n such that every graph in X with at least n vertices has either a clique of size p or an independent set of size q. We say that Ramsey numbers are linear in X if there is a constant k such that R X (p, q) ≤ k(p + q) for all p, q. In the present paper we conjecture that if X is a hereditary class defined by finitely many forbidden induced subgraphs, then Ramsey numbers are linear in X if and only if the co-chromatic number is bounded in X. We … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?