2021
DOI: 10.1039/d1ce00473e
|View full text |Cite
|
Sign up to set email alerts
|

Glycerol-controlled synthesis of a series of cobalt acid composites and their catalytic decomposition toward several energetic materials

Abstract: One of the challenges in solid propellant formulation is the ability to extend the combustion performance by efficiently catalyzing the decomposition of energetic additives. Herein, series of cobalt acid composites...

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 49 publications
0
3
0
Order By: Relevance
“…ZIF-67-S 1:4 219.7 -22.4 2381 +59.9 [PbZn(TATT)(OH)(H 2 O)] n [37] 1:4 215.5 -24.8 1474 +74.2 [Co 2 (1-mbt) 2 (N 3 ) 4 ] n [38] 1:3 212 -34 / / [Pb(bta)(H 2 O)] n [39] 1:4 230.1 -10.1 1252 +48.0 [Ag 2 (5-ATZ)(N 3 )] [40] 1:3 228.9 -17.5 / / [Pb(Htztr) 2 (H 2 O)] n [41] 1:3 230 -16 / / [Pb 2 (C 5 H 3 N 5 O 5 ) 2 (NMP)• NMP] n [42] 1:3 246.2 -2.0 1269.7 -6.8 GO-Cu-DBT [43] 1:4 242.7 -1.6 2242.7 +4.1 GO-T-Co-T [44] 1:4 248.1 +5.4 2248.8 +24.5 CuFe 2 O 4 /g-C 3 N 4 [23] 1:4 231.7 -10.6 2325 +58.1 Bi 2 WO 6 /g-C 3 N 4 [24] 1:4 235.8 -6.5 / / K 2 Pb[Cu(NO 2 ) 6 ] [20] 1:5 238.7 -3.6 1316 -37.2 CuCo 2 O 4 [15] 1:4 236.1 -6.2 / / Cu−Co/GO(Ar) [25] 1:4 228.6 -13.7 / / CuFe 2 O 4 /GO [45] 1:4 220.34 -20.93 / / MgFe 2 O 4 -GO [46] 1:4 234.62 -8.25 / / PbZrO 3 /GO [16] 1:4 217.99 -24.35 / / GT-Co [47] 1:4 243.6 +1.3 1886 +4.1 GO enveloped Bi 2 WO 6 [48] 1:4 208.5 -34.4 1816 +127.9 GO-MgWO 4 [49] 1…”
Section: Catalystsmentioning
confidence: 99%
“…ZIF-67-S 1:4 219.7 -22.4 2381 +59.9 [PbZn(TATT)(OH)(H 2 O)] n [37] 1:4 215.5 -24.8 1474 +74.2 [Co 2 (1-mbt) 2 (N 3 ) 4 ] n [38] 1:3 212 -34 / / [Pb(bta)(H 2 O)] n [39] 1:4 230.1 -10.1 1252 +48.0 [Ag 2 (5-ATZ)(N 3 )] [40] 1:3 228.9 -17.5 / / [Pb(Htztr) 2 (H 2 O)] n [41] 1:3 230 -16 / / [Pb 2 (C 5 H 3 N 5 O 5 ) 2 (NMP)• NMP] n [42] 1:3 246.2 -2.0 1269.7 -6.8 GO-Cu-DBT [43] 1:4 242.7 -1.6 2242.7 +4.1 GO-T-Co-T [44] 1:4 248.1 +5.4 2248.8 +24.5 CuFe 2 O 4 /g-C 3 N 4 [23] 1:4 231.7 -10.6 2325 +58.1 Bi 2 WO 6 /g-C 3 N 4 [24] 1:4 235.8 -6.5 / / K 2 Pb[Cu(NO 2 ) 6 ] [20] 1:5 238.7 -3.6 1316 -37.2 CuCo 2 O 4 [15] 1:4 236.1 -6.2 / / Cu−Co/GO(Ar) [25] 1:4 228.6 -13.7 / / CuFe 2 O 4 /GO [45] 1:4 220.34 -20.93 / / MgFe 2 O 4 -GO [46] 1:4 234.62 -8.25 / / PbZrO 3 /GO [16] 1:4 217.99 -24.35 / / GT-Co [47] 1:4 243.6 +1.3 1886 +4.1 GO enveloped Bi 2 WO 6 [48] 1:4 208.5 -34.4 1816 +127.9 GO-MgWO 4 [49] 1…”
Section: Catalystsmentioning
confidence: 99%
“…However, the use of nanocatalytic materials in energetic materials also suffers from a serious problem, that is, the strong agglomeration phenomenon of nanocatalytic materials seriously restricts their excellent catalytic properties. Nowadays, various methods have been adopted to suppress the agglomeration phenomenon of nanocatalytic materials, such as the preparation of uniformly dispersed nanoparticles by sol–gel and solvothermal methods, improving the dispersion of nanoparticles in the form of loading, etc. …”
Section: Introductionmentioning
confidence: 99%
“…For example, techniques, such as the sol-gel method and solvothermal method, are used to improve the dispersity of nanocatalytic materials through their preparation method; moreover, the dispersity could be improved by loading. [27][28][29][30][31] However, the dispersity of nanomaterials cannot be evaluated. Techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area testing (Brunauer-Emmett-Teller method), can only analyze the relative dispersity of the samples and cannot quantitatively analyze the dispersity of nanomaterials.…”
Section: Introductionmentioning
confidence: 99%