2015
DOI: 10.1208/s12249-015-0375-0
|View full text |Cite
|
Sign up to set email alerts
|

Glutamine-Loaded Liposomes: Preliminary Investigation, Characterization, and Evaluation of Neutrophil Viability

Abstract: Abstract. Glutamine has received attention due to its ability to ameliorate the immune system response. Once conventional liposomes are readily recognized and captured by immune system cells, the encapsulation of glutamine into those nanosystems could be an alternative to reduce glutamine dosage and target then to neutrophils. Our goals were to nanoencapsulate glutamine into conventional liposomes (Gln-L), develop an analytical high-performance liquid chromatography (HPLC) method for its quantification, and ev… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 37 publications
(41 reference statements)
0
1
0
Order By: Relevance
“…Microcirculatory alterations and mitochondrial damage, which reduce cellular energy production, have been considered a crucial mechanism of SIMD (33,34). Glutamine is the most abundant free amino acid in plasma and muscle tissue, and plays a major role in cell proliferation (35). It enters mitochondria primarily through the TCA cycle, which involves ammonia shuttling.…”
Section: Discussionmentioning
confidence: 99%
“…Microcirculatory alterations and mitochondrial damage, which reduce cellular energy production, have been considered a crucial mechanism of SIMD (33,34). Glutamine is the most abundant free amino acid in plasma and muscle tissue, and plays a major role in cell proliferation (35). It enters mitochondria primarily through the TCA cycle, which involves ammonia shuttling.…”
Section: Discussionmentioning
confidence: 99%