2020
DOI: 10.3390/plants9091056
|View full text |Cite
|
Sign up to set email alerts
|

Genome-Wide Association Mapping for Stripe Rust Resistance in Pakistani Spring Wheat Genotypes

Abstract: Stripe rust caused by the pathogen Puccinia striiformis f. sp. tritici (Pst) is a major threat for wheat, resulting in low yield and grain quality loss in many countries. Genetic resistance is a prevalent method to combat the disease. Mapping the resistant loci and their association with traits is highly exploited in this era. A panel of 465 Pakistani spring wheat genotypes were evaluated for their phenotypic response to stripe rust at the seedling and adult plant stages. A total of 765 single nucleotide polym… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7
2

Relationship

2
7

Authors

Journals

citations
Cited by 12 publications
(10 citation statements)
references
References 60 publications
(97 reference statements)
0
10
0
Order By: Relevance
“…Examples of conservation activities that impact on the use of the genetic resources that have been covered in this Special Issue include the following: easy access to genetic resources increases the capacity of breeders to respond to climate change and the availability of appropriate technologies [41]; access to traditional knowledge on the use of wild plant species [27]; a systematic association-mapping of wheat varieties with SNP markers was successfully used to associate adult plant stripe rust resistance with specific rust races, and results can be used in marker-assisted selection [29]; the analysis of a local genetic panel of manna ash with a continental dataset allowed conclusions on the presence of a possible glacial refuge, and thus facilitates the collecting and use of more genetic diversity [38]; the systematic characterization of ancient grape germplasm in Cyprus allowed the discovery of so far unnoticed genetic diversity [35]; literature searches and conducting field surveys allowed the identification of unknown wild food plants in Kenya [20]; fact sheets promoted the use of traditional food plants in the South Pacific [26]; the exploitation of the local genetic diversity of traditional pea landraces in Greece is fundamental for conservation practices and crop improvement through breeding strategies [32]; the evaluation of maize landrace accessions under heat and drought stresses resulted in invaluable sources of genes/alleles for adaptation breeding [30]; the review of recent efforts that build evidence of the importance of wild food plants in selected countries, while providing examples of cross-sectoral cooperation and multi-stakeholder approaches, contributes to enhancing their sustainable use [19]; the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity [40]; the utilization of advanced phenotyping tools, coupled with high-throughput genotyping, will accelerate the use of genetic resources and fast-track the development of more resilient food crops for the future [24]; and genomics-assisted breeding is increasingly facilitating the introgression of favorable genes and quantitative trait loci from wild species into cultigens, and will lead to a wider use of crop wild relatives in the development of resilient cultivars [25].…”
Section: Genetic Resources and Plant Breedingmentioning
confidence: 99%
See 1 more Smart Citation
“…Examples of conservation activities that impact on the use of the genetic resources that have been covered in this Special Issue include the following: easy access to genetic resources increases the capacity of breeders to respond to climate change and the availability of appropriate technologies [41]; access to traditional knowledge on the use of wild plant species [27]; a systematic association-mapping of wheat varieties with SNP markers was successfully used to associate adult plant stripe rust resistance with specific rust races, and results can be used in marker-assisted selection [29]; the analysis of a local genetic panel of manna ash with a continental dataset allowed conclusions on the presence of a possible glacial refuge, and thus facilitates the collecting and use of more genetic diversity [38]; the systematic characterization of ancient grape germplasm in Cyprus allowed the discovery of so far unnoticed genetic diversity [35]; literature searches and conducting field surveys allowed the identification of unknown wild food plants in Kenya [20]; fact sheets promoted the use of traditional food plants in the South Pacific [26]; the exploitation of the local genetic diversity of traditional pea landraces in Greece is fundamental for conservation practices and crop improvement through breeding strategies [32]; the evaluation of maize landrace accessions under heat and drought stresses resulted in invaluable sources of genes/alleles for adaptation breeding [30]; the review of recent efforts that build evidence of the importance of wild food plants in selected countries, while providing examples of cross-sectoral cooperation and multi-stakeholder approaches, contributes to enhancing their sustainable use [19]; the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity [40]; the utilization of advanced phenotyping tools, coupled with high-throughput genotyping, will accelerate the use of genetic resources and fast-track the development of more resilient food crops for the future [24]; and genomics-assisted breeding is increasingly facilitating the introgression of favorable genes and quantitative trait loci from wild species into cultigens, and will lead to a wider use of crop wild relatives in the development of resilient cultivars [25].…”
Section: Genetic Resources and Plant Breedingmentioning
confidence: 99%
“…Several papers highlight the importance of vegetables as well as traditional, underutilized and wild food plants for food and nutrition security in general [19,25], in pilot studies in Kenya [20], and on atolls in the South Pacific [26], including specific crops, such as Hairy Stork's Bill (Erodium crassifolium) [27], and the sister of the common pomegranate (Punica protopunica), the latter also having interesting medicinal properties [28]. A number of papers focus on the genetic diversity of specific crops or specific traits in a range of food crops for the benefit of plant breeding, such as genome-wide association mapping for stripe rust resistance in spring wheat [29], diversity studies for drought and heat stress in maize landraces [30], nitrogen fixation and water use efficiency in common bean landraces and cultivars in Honduras [31], species identification of Katsouni pea on Greek Islands [32], wild potato germplasm evaluation for starch content and nitrogen utilization efficiency [33], diversity, population structure and marker-trait association for 100-seed weight in a safflower (Carthamus tinctorius) germplasm panel [34], the composition of Cypriot grapevine varieties [35], species assignment, genetic diversity and phylogeographic relationships of wild germplasm of macadamia [36], genetic diversity and population structure of Rhododendron rex subsp. rex [37], and genetic distinctiveness of a Sicilian manna ash (Fraxinus angustifolia) collection [38].…”
Section: Introductionmentioning
confidence: 99%
“…SNPs genotyping have been applied in many organism including rice [112][113][114], Arabidopsis [115], maize [116], soybean [117] and wheat [118]. The high class order of the rice genome has offered genome-wide SNPs source [119].…”
Section: Snps As Genetic Markers From High-throughput Sequencingmentioning
confidence: 99%
“…Most of the GWAS for adult plant stripe rust resistance in wheat used single-locus association algorithms that may not capture the multi-locus complexity of agronomic traits. However, in recent years, more GWAS to identify stripe rust APR have been using multi-locus analysis models such as FramCPU, BLINK, MMLM, and mrMLM [33][34][35][36][37][38][39].…”
Section: Introductionmentioning
confidence: 99%