1975
DOI: 10.1002/pssa.2210310121
|View full text |Cite
|
Sign up to set email alerts
|

GaAs, GaP, and GaAs1−xPx films deposited by molecular beam epitaxy

Abstract: GaAs, GaP, and GaAs1−xPx films have been prepared by molecular beam epitaxy. The epitaxial temperatures without twins are found to be lower than 530 °C for GaAs and 550 °C for GaP with a depositiion rate about 100 Å/min. The crystallographic qualities of the deposited films are comparable to those of the crystals grown by LPE, and it is possible to control carrier concentration by simultaneous evaporation of dopant materials. The sticking coefficients of the dopants such as Sn, Mg, and Zn are measured and comp… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
2

Year Published

1976
1976
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 21 publications
(4 citation statements)
references
References 15 publications
0
2
0
2
Order By: Relevance
“…Molecular beam epitaxy (MBE) has proven to be a useful tool to grow epifilms with atomically flat surfaces and abrupt interfaces. While nearly perfect homoepitaxial growth was demonstrated by MBE, heteroepitaxial growth is challenged by dissimilar chemical bonding, surface dangling bonds, surface states, and surface symmetry mismatch. In addition, lattice mismatch, polar‐on‐non‐polar epitaxy, and thermal expansion mismatch add complexity to the direct heteroepitaxial growth of GaAs/Si.…”
Section: Introductionmentioning
confidence: 99%
“…Molecular beam epitaxy (MBE) has proven to be a useful tool to grow epifilms with atomically flat surfaces and abrupt interfaces. While nearly perfect homoepitaxial growth was demonstrated by MBE, heteroepitaxial growth is challenged by dissimilar chemical bonding, surface dangling bonds, surface states, and surface symmetry mismatch. In addition, lattice mismatch, polar‐on‐non‐polar epitaxy, and thermal expansion mismatch add complexity to the direct heteroepitaxial growth of GaAs/Si.…”
Section: Introductionmentioning
confidence: 99%
“…В работах [3,4,12] было показано, что составом твердого раствора GaP x As 1−x можно эффективно управлять, варьируя J As 2 при прочих неизменных условиях…”
Section: аппроксимационный анализ экспериментальных зависимостей R S ...unclassified
“…При МЛЭ твердых растворов (A III )P x As 1−x состав в катионной подрешетке эпитаксиального слоя однозначно задает-ся плотностями потоков атомов элементов III группы. Состав же в подрешетке V группы сложным образом зависит от температуры подложки (T s ), величины и соотношения потоков молекул элементов V и атомов III групп (J V и J III ), состава и состояния поверхности твердого раствора в процессе эпитаксии, молекулярной формы элементов V группы в потоке; кристаллографической ориентации поверхности подложки [3][4][5][6][7]. При разработке технологии выращивания гетероструктур, содержащих слои твердых растворов (A III )P x As 1−x , возникает задача по подбору значений плотностей потоков молекул мышьяка и фосфора, обеспечивающих заданное значение x в выбранных условиях эпитаксии.…”
Section: Introductionunclassified
“…Molecular beam epitaxy (MBE) is now an established technique for growing epitaxial semiconductor layers. MBE has been applied to GaAs (1-7), A1GaAs (1,2), GaP (8), GaAsP (8), InP (9)(10)(11), and to the II-VI semiconducting compounds (12). The significant characteristics of MBE are: (i) kinetic (as opposed to equilibrium) growth conditions, (ii) relatively slow growth rates (a few monolayers per second), and (iii) simplicity of flux control (e.g., by opening and closing shutters in front of the beam sources).…”
mentioning
confidence: 99%