2018
DOI: 10.1016/j.envsoft.2018.01.002
|View full text |Cite
|
Sign up to set email alerts
|

Forecasting urban household water demand with statistical and machine learning methods using large space-time data: A Comparative study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
27
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 54 publications
(30 citation statements)
references
References 24 publications
0
27
0
2
Order By: Relevance
“…Zubaidi et al proposed using singular spectrum analysis (SSA) and a linear autoregressive model [71] for predicting water demand. Furthermore, Duerr et al [66] evaluated the following spatiotemporal statistical models and ML algorithms to forecast monthly water demand: linear and linear mixed models with month effects, a multiple linear regression model, and time-series models (AR(1) and ARIMA, spatiotemporal Gaussian process models, generalized additive models GAM), random forests (RF), Bayesian additive regression trees (BART), and gradient boosting machines (GBM)). The study found that time-series models outperformed other models, indicating the temporal dynamics of water consumption.…”
Section: Hybrid-based Methodsmentioning
confidence: 99%
“…Zubaidi et al proposed using singular spectrum analysis (SSA) and a linear autoregressive model [71] for predicting water demand. Furthermore, Duerr et al [66] evaluated the following spatiotemporal statistical models and ML algorithms to forecast monthly water demand: linear and linear mixed models with month effects, a multiple linear regression model, and time-series models (AR(1) and ARIMA, spatiotemporal Gaussian process models, generalized additive models GAM), random forests (RF), Bayesian additive regression trees (BART), and gradient boosting machines (GBM)). The study found that time-series models outperformed other models, indicating the temporal dynamics of water consumption.…”
Section: Hybrid-based Methodsmentioning
confidence: 99%
“…Water demand modelling that reconstructs detailed household, temporal, and weather variables would enable planners to predict small area demands and test new tariffs (Clarke, 1997). In addition, these variables can enhance the understanding of water use behaviours and thus support improved demand management practices (Duerr, 2018). This is particularly important when the distribution of customer demand is highly skewed, particularly on peak demand days, when a small number of customers are responsible for a high percentage of the total water use.…”
Section: Overview and Aimmentioning
confidence: 99%
“…However, accuracy could be improved if more variables were included in the analysis. Duerr et al (2018) also developed a water demand forecasting model using property (e.g. land and building value, green space), temporal (e.g.…”
Section: Introductionmentioning
confidence: 99%
“…En la Figura 2, se observa que los proyectos trabajan con bases de datos iguales o superiores a un año, once artículos entre uno y diez años y tres estudios con 14, 21 y más de 50 años de información recolectada. El estudio ID [25] que no se muestra en el gráfico, presenta una distribución espacial y no temporal, es decir en un día se tomó una muestra en 48 puntos diferentes a lo largo del rio, lo que evidencia dos tipos de distribuciones para los análisis de calidad de agua en ríos [36].…”
Section: Evaluación Del Desempeñounclassified