This study investigates the effects of two waste materials from construction and industry, namely recycled concrete aggregate (RCA) and Type C fly ash, on the overall performance of a special type of pavement surface mixture, porous asphalt mixture. Mixtures of different combinations of RCA (for partial aggregate replacement) and fly ash (for filler replacement) were prepared in the laboratory and tested for a variety of pavement surface performance parameters, including air-void content, permeability, Marshall stability, indirect tensile strength, moisture susceptibility, Cantabro loss, macrotexture, and sound absorption. The analysis of the results showed that incorporating RCA or fly ash in a porous asphalt mixture slightly reduced the air-void content, permeability, and surface macrotexture of the mixture. A 10% replacement of granite aggregates with RCA in the porous asphalt mixtures led to a reduction in mixture stability, indirect tensile strength, resistance to raveling, and sound absorption. The further substitution of mineral filler with fly ash in the mixture, however, helped to offset the negative impact of RCA and brought the mechanical properties of the mixture with 10% RCA to levels comparable to those of the control mixture.