The influence of long-range interactions on local structures is an important issue in understanding protein folding process and protein structure stability. Using short-chain snake venom neurotoxin as a model system, we have studied the conformational properties of eight different loop III sequences either in the environment of one of the short-chain neurotoxin, erabutoxin b (PDB ID 1nxb), or in free state by Monte Carlo simulated annealing method. The surrounding protein structure was found to be crucial in stabilizing the loop conformation. Although all the eight peptides prefer type V  turn in solution, three of them (KPGI, KPGV, KSGI) turn to type II  turn and the other five (KKGI, KKGV, KNGI, KQGI, and KRGV) are confined to more rigid type V  turn conformation in the protein structure. Using flexible tetra-glycine-peptide to screen the backbone conformational space in the protein environment also validates the results. This study shows that long-range interactions do contribute to the stability and the types of conformation for a surface loop in protein, while short-range interactions may only provide candidate conformations, which then have to be filtered by the long-range interactions further. Proteins 2001;42:6 -16.