2022
DOI: 10.3390/pr10101949
|View full text |Cite
|
Sign up to set email alerts
|

Excellent Antimicrobial, Antioxidant, and Catalytic Activities of Medicinal Plant Aqueous Leaf Extract Derived Silver Nanoparticles

Abstract: Antimicrobial resistance is one of the crucial public health challenges that we need to combat. Thus, in concern over public health and the economy, controlling the emergence of infectious diseases is critical worldwide. One of the ways to overcome the influences of antimicrobial resistance is by developing new, efficient, and improved antimicrobial agents. Medicinal plant-derived silver nanoparticles (AgNPs) are under intensive examination for a variety of therapeutic purposes and targeted applications in nan… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 77 publications
0
1
0
Order By: Relevance
“…The key point in the successful synthesis of nanoparticles, however, is the availability of functional groups in bioreductants such as carboxylic, hydroxyl, and carbonyl groups that are reported to be involved in the bioreduction of Ag ions to NP along with stabilizing properties [20,21]. A variety of studies have been performed in recent years aimed at the synthesis of AgNPs using a diverse range of plant materials such as Calotropis gigantea [22], Annona Squamosa [23], Acer oblongifolium [24], Cascabela thevetia [25], Cymbopogon citratus [26], Eucalyptus globulus, and Salvia officinalis [27]. However, due to the relative diversity and stability of secondary metabolites, green tea leaves are most frequently reported in the literature as a natural source of reducing agents used in the biosynthesis of AgNPs [13,28].…”
Section: Introductionmentioning
confidence: 99%
“…The key point in the successful synthesis of nanoparticles, however, is the availability of functional groups in bioreductants such as carboxylic, hydroxyl, and carbonyl groups that are reported to be involved in the bioreduction of Ag ions to NP along with stabilizing properties [20,21]. A variety of studies have been performed in recent years aimed at the synthesis of AgNPs using a diverse range of plant materials such as Calotropis gigantea [22], Annona Squamosa [23], Acer oblongifolium [24], Cascabela thevetia [25], Cymbopogon citratus [26], Eucalyptus globulus, and Salvia officinalis [27]. However, due to the relative diversity and stability of secondary metabolites, green tea leaves are most frequently reported in the literature as a natural source of reducing agents used in the biosynthesis of AgNPs [13,28].…”
Section: Introductionmentioning
confidence: 99%