In this paper, we study the analytical solutions to the isentropic Euler system with the logarithmic equation of state, which has been introduced for the dark energy fluid to investigate the dynamical evolution of a late-time universe. By using some ansatz, we construct some analytical solutions for one-dimensional case, [Formula: see text]-dimensional radially symmetric case and three-dimensional cylindrically symmetric case, respectively. The concentration and cavitation phenomena are investigated and some global analytical solutions are obtained under some conditions.