Since the inception of modern social evolution theory, a vast majority of studies have sought to explain cooperation using relatedness-driven hypotheses. Natural populations, however, show a substantial amount of variation in social behaviour that is uncorrelated with relatedness. Age offers a major alternative explanation for variation in behaviour that remains unaccounted for. Most natural populations are structured into age-classes, with ageing being a nearly universal feature of most major taxa, including eukaryotic and prokaryotic organisms. Despite this, the theoretical underpinnings of age-dependent social behaviour remain limited. Here, I investigate how group age-composition, demography and life history shape trajectories of age-dependent behaviours that are expressed conditionally on an actor and recipient's age. I show that demography introduces novel age-dependent selective pressures acting on social phenotypes. Furthermore, I find that life history traits influence the costs and benefits of cooperation directly, but also indirectly. Life history has a strong impact not only on the genetic structure of the population but also on the distribution of group age-compositions, with both of these processes influencing the expression of age-dependent cooperation. Age of peak reproductive performance, in particular, is of chief importance for the evolution of cooperation, as this will largely determine the age and relatedness of social partners. Moreover, my results suggest that later-life reproductive senescence may occur because of demographic effects alone, which opens new vistas on the evolution of menopause and related phenomena.