Three wheat cultivars with different tolerances against free aluminium were grown monoxenically in association with Azospirillum brasilense. In situ nitrogen fixation, measured with the acetylene reduction assay, was higher by the aluminium-tolerant cultivars than by the sensitive cultivar. The transfer of fixed nitrogen to the host plant, determined by the 15N dilution technique, was also significantly higher in the aluminium-resistant wheat plants. The total accumulation of fixed nitrogen in the host plants due to an A. brasilense inoculation varied from approximately 13% to 17% of the total nitrogen in the root and 2.9% to 3.9% of the nitrogen in the shoot.The quantity and quality of exudates released in liquid nutrient solution were analysed separately for two of the wheat cultivars, one aluminium-tolerant and one aluminium-sensitive. After 29 days of growth the aluminium-tolerant plants exudated significantly higher total amounts of carbon than aluminium-sensitive plants. No differences between the two cultivars existed in the carbon exudation rate per gram dry root.Much higher concentrations of low molecular dicarboxylic acids i.e. succinic, malic and oxalic acid, were found in the exudates of aluminium-tolerant plants. Dicarboxylic acids are potential chelating compounds for positively charged metals such as aluminium and they may play an important role in protecting the plant against aluminium incorporation. They are also very suitable substrates for Azospirillum spp. It is therefore suggested that these factors may be causing the higher associative nitrogen fixation rates which was found in the aluminium-tolerant wheat cultivars.