2014
DOI: 10.1016/j.jat.2014.03.014
|View full text |Cite
|
Sign up to set email alerts
|

Estimates forn-widths of sets of smooth functions on the torusTd

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
2
0
2

Year Published

2015
2015
2023
2023

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 15 publications
0
2
0
2
Order By: Relevance
“…Se Λ (2) = {λ k } k∈Z d , onde a função λ : [0, ∞) → Ré definida por λ(t) = e −γt r , γ, r > 0, temos que Λ (2) U p são conjuntos de funções infinitamente diferenciáveis (analíticas para r = 1).…”
Section: Resultsunclassified
See 1 more Smart Citation
“…Se Λ (2) = {λ k } k∈Z d , onde a função λ : [0, ∞) → Ré definida por λ(t) = e −γt r , γ, r > 0, temos que Λ (2) U p são conjuntos de funções infinitamente diferenciáveis (analíticas para r = 1).…”
Section: Resultsunclassified
“…Teorema 2.2. Seja Λ (2) o operador multiplicador definido acima e R = γ dΓ(d/2)/2π d/2 r/d . Então para todo n ∈ N e 0 < r ≤ 1…”
Section: Resultsunclassified
“…It follows from [10] and [13] that for 1 ≤ p ≤ 2 ≤ q < ∞, the (2n) d -width of Kolmogorov of K * U p verifies…”
Section: Introductionmentioning
confidence: 90%
“…In [2,3,10,11,12,13,14,15,16,17,18] techniques were developed to obtain estimates for n-widths of multiplier operators defined for functions on torus and on two-points homogeneous spaces M d : S d , P d (R), P d (C), P d (H), P 16 (Cay). In this work we continue the development of methods of estimating n-widths of multiplier operators.…”
Section: Introductionmentioning
confidence: 99%