2023
DOI: 10.1111/jace.19290
|View full text |Cite
|
Sign up to set email alerts
|

Enhanced electrostrains in PMN–xPZN solid solutions driven by a rather small electric field

Abstract: Pb(Mg1/3Nb2/3)O3 (PMN) relaxors have gained a lot of interest due to their unusual dielectric relaxation and high electrostrictive electrostrain. However, the Tm (temperature associated with maximum permittivity) of PMN is lower than room temperature, which limits their future development of electrostrain and practical applications. In this study, we increased the Tm by incorporating a relaxor ferroelectric (FE) end member Pb(Zn1/3Nb2/3)O3 (PZN) rather than a conventional high Curie temperature FE end member t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 74 publications
(144 reference statements)
0
0
0
Order By: Relevance