eWork and eBusiness in Architecture, Engineering and Construction 2018
DOI: 10.1201/9780429506215-11
|View full text |Cite
|
Sign up to set email alerts
|

Energy-saving potential of large space public buildings based on BIM: A case study of the building in high-speed railway station

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(4 citation statements)
references
References 1 publication
0
4
0
Order By: Relevance
“…Research concentrating on railway station buildings, especially the high speed type, is relatively limited; some of the existing literature takes into account reduction measures for energy consumption that are directly correlated to operational emissions, such as: the relationship between energy consumption and passenger flow density [16]; energy efficiency measures on performance parameters of a building envelope, area ratio of skylight and sun shading mode [17]; energy saving approaches that place greater emphasis on the reduction of air infiltration [18]; triadic relation among lighting comfort level and lighting energy consumption [19]; intelligent control strategies as feasible energy saving solutions [20]; and energy efficient analysis on construction scale, space design, function layout, and operation mode [21,22]. Energy potential in conventional stations or HSRS has been analyzed in different domestic regions.…”
Section: Ghg Emission Reduction Strategies For Buildingsmentioning
confidence: 99%
See 3 more Smart Citations
“…Research concentrating on railway station buildings, especially the high speed type, is relatively limited; some of the existing literature takes into account reduction measures for energy consumption that are directly correlated to operational emissions, such as: the relationship between energy consumption and passenger flow density [16]; energy efficiency measures on performance parameters of a building envelope, area ratio of skylight and sun shading mode [17]; energy saving approaches that place greater emphasis on the reduction of air infiltration [18]; triadic relation among lighting comfort level and lighting energy consumption [19]; intelligent control strategies as feasible energy saving solutions [20]; and energy efficient analysis on construction scale, space design, function layout, and operation mode [21,22]. Energy potential in conventional stations or HSRS has been analyzed in different domestic regions.…”
Section: Ghg Emission Reduction Strategies For Buildingsmentioning
confidence: 99%
“…LCCO 2eq represents the total GHG emissions of a function unit in the life cycle. In the complete life cycle of an HSRS building, A1-A3, B4, and B6 are together responsible for more than 90% of total emissions in the case studies [21]. The early design stage has the largest impact on the life cycle stages, while controlling transportation/construction, and the end-of-life stage is difficult [50].…”
Section: Goal and Scopementioning
confidence: 99%
See 2 more Smart Citations