2020
DOI: 10.1063/5.0002501
|View full text |Cite
|
Sign up to set email alerts
|

Embedded plasmonic nanoprisms in polymer solar cells: Band-edge resonance for photocurrent enhancement

Abstract: Introduction of metallic nanoparticles that can generate the surface plasmon resonance (SPR) has been considered as a prominent option for enhancing the performance of polymer solar cells (PSCs), as the radiative scattering and field confinement by the SPR can extend the effective photon traveling length and manipulate the spatial absorption profile. Despite many successful efforts to favorably exploit metallic nanoparticles, further studies of their effects on the PSC performance have been demanded to achieve… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 50 publications
0
1
0
Order By: Relevance
“…Various attempts have been exercised to improve their PCE that have led to the formation of several mechanisms, such as surface modifications or functionalizations, used to increase the ability of the thin active layer to absorb light through periodic grating structures in electrodes, modifying the structural configuration of the layers, reconstructing the structure of optical devices for improved light distribution, and the inclusion of metallic nanoparticles (MNPs). Among the above strategies, MNPs have garnered broad interests as an effective way to trap light in the active layer, increase the dissociation of excitons, and improve the light absorption without increasing the thickness of the active layer due to their near-field coupling effect or localized surface plasmon resonance (LSPR) [ 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 ].…”
Section: Introductionmentioning
confidence: 99%
“…Various attempts have been exercised to improve their PCE that have led to the formation of several mechanisms, such as surface modifications or functionalizations, used to increase the ability of the thin active layer to absorb light through periodic grating structures in electrodes, modifying the structural configuration of the layers, reconstructing the structure of optical devices for improved light distribution, and the inclusion of metallic nanoparticles (MNPs). Among the above strategies, MNPs have garnered broad interests as an effective way to trap light in the active layer, increase the dissociation of excitons, and improve the light absorption without increasing the thickness of the active layer due to their near-field coupling effect or localized surface plasmon resonance (LSPR) [ 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 ].…”
Section: Introductionmentioning
confidence: 99%