1971
DOI: 10.1002/mana.19710490108
|View full text |Cite
|
Sign up to set email alerts
|

Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I

Abstract: Sei K ein Korper, w eine diskrete Bewertung von K mit dem vollkommenen Restklassenkorper k, D der Ring der w-ganzen Elemente von K . Die Restklassencharakteristik von w bezeichnen wir mit pw . Sei E eine uber K definierte elliptische Kurve. Nach Definition ist E w-regular (oder: E besitzt gute Reduktion modulo w) genau dann, wenn es ein. irreduzibles, reduziertes, flaches, eigentliches Schema E, uber E gibt mit folgenden Eigenschaften : I) Die allgemeine Faser E, x K ist isomorph zu E ; 11) die spezielle Faser… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
11
0

Year Published

1973
1973
2016
2016

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 29 publications
(11 citation statements)
references
References 8 publications
0
11
0
Order By: Relevance
“…Let p be a prime of the form u 2 + 64 for some integer u, which is congruent to 1 modulo 4. According to Neumann [14][15] and Setzer [17], there are just two elliptic curves of conductor p, up to isomorphism, namely,…”
Section: Quadratic Twists Of Neumann-setzer Elliptic Curvesmentioning
confidence: 99%
“…Let p be a prime of the form u 2 + 64 for some integer u, which is congruent to 1 modulo 4. According to Neumann [14][15] and Setzer [17], there are just two elliptic curves of conductor p, up to isomorphism, namely,…”
Section: Quadratic Twists Of Neumann-setzer Elliptic Curvesmentioning
confidence: 99%
“…In the second case, E is one of two curves considered by Neumann and Setzer (see [29], [30], [36]). It follows that p = u 2 + 64, where u is an integer which we take to be congruent to 3 (mod 4).…”
Section: Proofs Of Results On Elliptic Curvesmentioning
confidence: 99%
“…Neumann and Setzer [18,19,22] considered the following two elliptic curves of conductor p (note that Setzer chose u ≡ 1(mod 4) instead): Moreover, if E is any elliptic curve over Q of prime conductor with a rational point of order 2, then E is a Neumann-Setzer curve or has conductor 17 (see [22]). …”
Section: Introductionmentioning
confidence: 99%