2006
DOI: 10.1016/j.surfcoat.2005.06.009
|View full text |Cite
|
Sign up to set email alerts
|

Electrode temperature evolution during anodic oxidation of AlSi(Cu) alloys studied in the wall-jet reactor

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
1

Year Published

2006
2006
2022
2022

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 22 publications
(11 citation statements)
references
References 26 publications
0
9
0
1
Order By: Relevance
“…Previous studies have shown that the rise in temperature can be several tens of degrees centigrade at high current densities (e.g., DT % 608C at j % 0.3 A cm À2 ). [42,43] The main contribution to heat generation in anodization of aluminum is related to current flow through the barrier oxide layer. The production of Joule's heat (Q) for a given time t is proportional to the square of the current density ( j) according to the following equation;…”
Section: Local Heat Developmentmentioning
confidence: 99%
See 1 more Smart Citation
“…Previous studies have shown that the rise in temperature can be several tens of degrees centigrade at high current densities (e.g., DT % 608C at j % 0.3 A cm À2 ). [42,43] The main contribution to heat generation in anodization of aluminum is related to current flow through the barrier oxide layer. The production of Joule's heat (Q) for a given time t is proportional to the square of the current density ( j) according to the following equation;…”
Section: Local Heat Developmentmentioning
confidence: 99%
“…[39,40,44] For anodization in a wall-jet electrode reactor, it was reported that the temperature is highest at the center of the anode where the local convection transfer coefficient is highest, and it decrease gradually in the radial direction due to the natural convection flow of the electrolyte. [40] In analogy, we believe that a local temperature distribution established along the anode surface results in a non-uniform current flow and thus non-uniform thickness distribution of the anodic film.…”
Section: Local Heat Developmentmentioning
confidence: 99%
“…In steady state condition, the anodization current reach to constant value and the rate of oxide production is equal to the rate of oxide dissolution. The rate of these major reactions strongly depends on the barrier layer temperature [30,31]. According to high thermal conductivity of aluminum, cooling the aluminum sample from back, as shown in Fig.…”
Section: Resultsmentioning
confidence: 99%
“…En general se reconoce en la literatura que el tamaño de poro depende fuertemente del potencial de anodizado y la temperatura, en una menor proporción depende de la concentración del ácido, y varía levemente con el tiempo de anodizado [38]. El proceso de anodizado de aluminio a potencial constante se reconoce como un proceso electroquímico que viene acompañado por efectos térmicos significativos, debido a la reacción anódica exotérmica y el fenómeno de calentamiento Joule (el cual es más importante) [40]. Un aumento local de la temperatura sobre la superficie de la muestra favorece la disolución del óxido de aluminio [38].…”
Section: Muestra Elemento Químico Contenido Atómico (At %)unclassified