Elderberry, which is well known for its richness in anthocyanin, is attracting attention in the bioindustry as a functional material with high antioxidant capacity. The aim of this study is to optimize extraction conditions to more effectively recover anthocyanins from elderberry. In a fundamental experiment to determine the suitable solvent, various GRAS reagents, such as acetone, ethanol, ethyl acetate, hexane, and isopropyl alcohol, were used, and total phenol and anthocyanin contents were detected as 9.0 mg/g-biomass and 5.1 mg/g-biomass, respectively, only in the extraction using ethanol. Therefore, ethanol was selected as the extraction solvent, and an experimental design was performed to derive a response surface model with temperature, time, and EtOH concentration as the main variables. The optimal conditions for maximal anthocyanin recovery were determined to be 20.0 °C, 15.0 min, and 40.9% ethanol, and the total anthocyanin content was 21.0 mg/g-biomass. In addition, the total phenol and flavonoid contents were detected as 67.4 mg/g-biomass and 43.8 mg/g-biomass, respectively. The very simple and economical extraction conditions suggested in this study contributed to improving the utilization potential of anthocyanin, a useful antioxidant derived from elderberry.