The performance of Agent-based Traffic Simulations (ABTS) has been shown to benefit tremendously from offloading to accelerators such as GPUs. In the search for the most suitable hardware platform, reconfigurable hardware is a natural choice. Some recent work considered ABTS on Field-Programmable Gate Arrays (FPGAs), yet only implemented simplified cellular automaton-based models. The recent introduction of support for high-level synthesis from C, C++, and OpenCL in FPGA toolchains allows FPGA designs to be expressed in a form familiar to software developers. However, the performance achievable with this approach in a simulation context is not well-understood. In this work, to the best of our knowledge, we present the first FPGA-accelerated ABTS based on widely-accepted microscopic traffic simulation models, and the first to be generated from high-level code. The achieved speedup of up to 24.3 over a sequential CPU-based execution indicates that recent FPGA toolchains allow simulationists to unlock the performance benefits of reconfigurable hardware without the need to express the simulation models in low-level hardware description languages.
CCS CONCEPTS• Computing methodologies → Agent / discrete models; Massively parallel and high-performance simulations; Simulation tools; • Hardware → Hardware accelerators.