Green fluorescent protein (GFP)-expressing wild-type, and nontransgenic mouse vibrissa follicle cells were cultured and implanted to mouse ears and footpads. Dermal papiller (DP)-derived cells and cells from the peribulbar dermal sheath "cup" (DSC) induced new hair follicles in both implanted ears and footpads, while nonbulbar dermal sheath cells did not. Confocal microscopy revealed that GFP-expressing DP and DSC cells induced hair growth associated with the formation of DP exclusively comprised of fluorescent cells. In mouse ears, but not footpads, fluorescent DP and DSC cells could also be identified in DP along with nonfluorescent cells. DSC cells were characterized in vivo and in vitro by low alkaline phosphatase activity in contrast to high alkaline phosphatase in DP cells. The results indicate transplanted DP and DSC cells were equally capable of DP formation and hair follicle induction. This suggests the DP and peribulbar DSC may be functionally similar. In addition to observing papillae exclusively composed of GFP-expressing cells, DP and DSC cells may also have combined with resident cells to form papillae composed of implanted GFP-expressing cells and host-derived non-GFP-expressing cells. Alkaline phosphatase expression may be utilized as a simple marker to identify hair follicle mesenchyme derived cells with hair follicle inductive abilities.
Alopecia areata (AA) is a suspected hair follicle specific autoimmune disease. The potential for cell transfer of AA using the C3H/HeJ mouse model was examined. Cells isolated from lymph nodes and spleens of AA-affected mice using magnetic bead conjugated monoclonal antibodies were subcutaneously injected into normal C3H/HeJ recipients. Within 5 wk, all CD8(+) cell-injected mice exhibited localized hair loss exclusively at the site of injection that persisted until necropsy. In contrast, some CD4(+) and CD4(+)/CD25(-) cell-injected mice developed extensive, systemic AA, and a combination of CD8(+) and CD4(+)/CD25(-) cells injected yielded the highest frequency of systemic AA induction. CD4(+)/CD25(+) cells were less able to transfer the disease phenotype, partially blockaded systemic AA induction by CD4(+)/CD25(-) cells, and prevented CD8(+) cell-induced, injection site-localized hair loss. CD11c(+) and CD19(+) cells failed to promote significant phenotype changes. Increases in co-stimulatory ligands CD40 and CD80, plus increased leukocyte apoptosis resistance with reduced CD95, CD95L, and CD120b expression, were associated with successful alopecia induction. The results suggest that CD8(+) cells may be the primary instigators of the hair loss phenotype. However, systemic disease expression fate is, apparently determined by CD4(+)/CD25(-) cells, while CD4(+)/CD25(+) lymphocytes may play a predominantly regulatory role.
IFNgamma(-/-) mice fail to activate Th1 cells in response to the transplanted (auto)antigens, which suggests an essential requirement for IFN-gamma-mediated Th1 activation in the induction of AA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.