The use of coproducts as an alternative feed source is a common practice when formulating dairy rations. A study using 12 multiparous (79 ± 16 d in milk; mean ± standard deviation) lactating Jersey cows was conducted over 5 mo to evaluate the effects of dried distillers grains with solubles (DDGS) or canola meal on milk and gas production. A replicated 4 × 4 Latin square design was used to compare 4 dietary treatments. Treatments comprised a control (CON) containing no coproducts, a treatment diet containing 10% (dry matter basis) lowfat DDGS (LFDG), a treatment diet containing 10% high-fat DDGS (HFDG), and a 10% canola meal (CM) treatment. The crude fat content of the LFDG, HFDG, and CM treatments was 6.05 ± 0.379, 10.0 ± 0.134, and 3.46 ± 0.085%, respectively. Coproducts were included in partial replacement for corn and soybean meal. Indirect headbox-style calorimeters were used to estimate heat production. Dry matter intake and milk yield were similar between all treatments, averaging 17.4 ± 0.56 kg/d and 24.0 ± 0.80 kg, respectively. Milk urea N was affected by treatment and was highest in CON (20.6 mg/dL; 18.0, 19.9, and 18.1 ± 0.62 mg/dL in LFDG, CM, and HFDG, respectively). Heat production per unit of metabolic body weight tended to be affected by treatment and was lowest for CON, and diets containing coproducts were not different (192, 200, 215, and 204 ± 5.91 kcal/kg of metabolic body weight for CON, LFDG, CM, and HFDG, respectively). The concentration of metabolizable energy was affected by dietary treatment; specifically, HFDG did not differ from CON but was greater than LFDG and CM (2.58, 2.46, 2.29, and 2.27 ± 0.09 Mcal/kg for HFDG, CON, LFDG, and CM, respectively). The concentration of net energy balance (milk plus tissue) tended to be affected by dietary treatment; HFDG did not differ from either CON or LFDG, but it was higher than CM (1.38, 1.36, 1.14, and 1.06 ± 0.11 Mcal/kg for HFDG, CON, LFDG, and CM, respectively). Results of this study indicate that milk production and dry matter intake were not affected by feeding common coproducts and that differences may result in whole-animal energy use; fat content of DDGS is a major factor affecting this.