This paper deals with the influence of initial crack-tip shape, plastic compressibility and material or strain softening on near-tip stress-strain fields for mode I crack when subjected to fatigue loading with an overload event under plane strain and small scale yielding conditions. A finite strain elastic-viscoplastic constitutive equation with a hardening-softening--hardening hardness function is taken up for simulation. For comparison, a bilinear hardening hardness function is also considered. It has been observed that the near-tip crack opening stress σ yy , crack growth stress σ xx , and hydrostatic stresses are noticeably controlled by the initial crack tip shape, plastic compressibility, material softening as well as the overload event. The distribution pattern of different stresses for a plastically compressible hardening--softening-hardening solid appears to be very unusual and advantageous as compared to those of traditional materials. Therefore, the present numerical results may guide material scientists/engineers to understand the near-tip stress-strain fields and growth of a crack in a better way for plastically compressible solids, and thus may help to develop new materials with improved properties.