This paper deals with the effect of initial crack tip shape, plastic compressibility, and strain softening on near-tip stress-strain fields for a mode I crack subjected to fatigue loading under plane strain and small scale yielding. A finite strain-based elastic-viscoplastic constitutive equation with bilinear hardening and hardening-softening-hardening hardness functions is taken up for simulation. It is observed that plastic compressibility and strain softening have a significant impact on crack tip opening displacement (CTOD) and tip propagation. Furthermore, it has been viewed that the initial shape of a crack tip can significantly influence both the CTOD and the crack tip extension for the bilinear hardening material; however, with identical conditions for the hardening-softening-hardening material, the initial crack tip shape affects the fatigue crack growth much lesser though the CTOD is influenced considerably. In comparison to the crack growth in the plastically incompressible hardening-softening-hardening solids, the variation of the crack growth (with respect to the tip curvature radius) is more and peculiar in the corresponding plastically compressible solid. To explain and to get a better insight of the crack tip deformation, the near-tip plastic strain and hydrostatic stress have been illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.