2009
DOI: 10.1007/s00339-009-5099-0
|View full text |Cite
|
Sign up to set email alerts
|

Effect of cooling rate on microstructural formation and hardness of 30CrNi3Mo steel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
10
0
1

Year Published

2012
2012
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 20 publications
(11 citation statements)
references
References 10 publications
0
10
0
1
Order By: Relevance
“…In general, a finer microstructure is preferred to a coarser one, as small grains improve key material properties such as hardness, tensile strength and ductility by suppressing, or at least delaying, crack growth propagation [7]. The fast cooling of carbon-containing steels supports the formation of a fine martensitic structure [8] instead of an austenitic, bainitic or ferritic one when compared to conventional primary shaping processes [9]. This is desirable for the fabrication of ready-to-use components, as a subsequent heat treatment for the hardening of the final product is not necessarily required.…”
Section: Pbf-lb/mmentioning
confidence: 99%
“…In general, a finer microstructure is preferred to a coarser one, as small grains improve key material properties such as hardness, tensile strength and ductility by suppressing, or at least delaying, crack growth propagation [7]. The fast cooling of carbon-containing steels supports the formation of a fine martensitic structure [8] instead of an austenitic, bainitic or ferritic one when compared to conventional primary shaping processes [9]. This is desirable for the fabrication of ready-to-use components, as a subsequent heat treatment for the hardening of the final product is not necessarily required.…”
Section: Pbf-lb/mmentioning
confidence: 99%
“…For this reason, useful correlations can be developed that directly relate the microhardness of an alloy to cooling rate. shows such relationships between hardness and cooling rates for collected data on steels [61][62][63][64][65][66], aluminum alloys [67][68][69][70][71] and nickel alloys [72][73][74][75][76] in which plates or bars are cooled at controllable rates. The logarithmic scale on the horizontal axis shows that the cooling rates cover multiple orders of magnitudes.…”
Section: Cooling Ratesmentioning
confidence: 99%
“…Figure 4. Hardness data as a function of reported cooling rates for (a) steels [61][62][63][64][65][66], (b) aluminum alloys [67][68][69][70][71] and (c) nickel alloys [72][73][74][75][76] in which no post-processing heat treatment was used. Hardness variations as a function of location within a DED-L single pass, multilayer build of IN718 [81] showing (a) a longitudinal cross section (X-Z plane), (b) a transverse cross section (Y-Z plane), and (c) a horizontal cross section (X-Y plane) where X is the travel direction, Y is the track width direction, and Z is the build direction.…”
Section: (D)mentioning
confidence: 99%
See 1 more Smart Citation
“…Bu çalışmanın sonucunda çeliklerin ölçülen sertlik değerlerinin, soğuma hızının artmasıyla doğrusal olmayan bir artış gösterdiği tespit edilmiştir. Ayrıca soğuma hızı 100ºC/dk'dan daha büyük olduğunda, sertliklerde artan soğuma hızıyla birlikte çok az bir düşüş yaşandığı da gözlenmiştir [9]. Shanmugam vd, niyobyumlu mikro alaşımlı çeliklerin mikro yapı ve mekanik özellikleri üzerine soğuma hızının etkisini incelediği çalışmasında; düşük soğuma hızlarında yapının ferrit ve perlit içerdiği, orta derece bir soğuma hızında yapının ferrit-perlite ek olarak çıta tipi beynitik ferrit ile dejenere perlit içerdiği ve hızlı soğuma hızlarda ise yapının ağırlıklı olarak çıta tipi beynitik ferritten oluştuğunu bildirmiştir [10].…”
Section: Gi̇ri̇ş (Introduction)unclassified