2019
DOI: 10.3390/e21030303
|View full text |Cite
|
Sign up to set email alerts
|

Dynamics of Ebola Disease in the Framework of Different Fractional Derivatives

Abstract: In recent years the world has witnessed the arrival of deadly infectious diseases that have taken many lives across the globe. To fight back these diseases or control their spread, mankind relies on modeling and medicine to control, cure, and predict the behavior of such problems. In the case of Ebola, we observe spread that follows a fading memory process and also shows crossover behavior. Therefore, to capture this kind of spread one needs to use differential operators that posses crossover properties and fa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
20
0

Year Published

2019
2019
2021
2021

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 76 publications
(23 citation statements)
references
References 26 publications
0
20
0
Order By: Relevance
“…By using Equation 1, we can present fractional-order differential equations in a simple, matrix/vector form. Therefore, we can find many uses of the state-space system (1) in practical applications, e.g., in electrical circuits [4,6], in modeling of thermal and diffusion processes [12,13,15], in medicine [8,16], etc. The fractional-order derivative is often described by using one of three definitions, that is, the Riemman-Liouville (RL), Caputo, or Grünwald-Letnikov (GL) definitions.…”
Section: Preliminariesmentioning
confidence: 99%
See 2 more Smart Citations
“…By using Equation 1, we can present fractional-order differential equations in a simple, matrix/vector form. Therefore, we can find many uses of the state-space system (1) in practical applications, e.g., in electrical circuits [4,6], in modeling of thermal and diffusion processes [12,13,15], in medicine [8,16], etc. The fractional-order derivative is often described by using one of three definitions, that is, the Riemman-Liouville (RL), Caputo, or Grünwald-Letnikov (GL) definitions.…”
Section: Preliminariesmentioning
confidence: 99%
“…Fractional-order systems incorporating fractional-order derivatives (or differences) have attracted considerable research interest as their specific nature can be more adequate to describe some complex physical phenomena [1][2][3][4][5][6][7][8][9][10][11][12][13]. Since the fractional-order derivative is not defined at a point as in the case of its integer-order counterpart, impulse responses of fractional-order systems are not, in general, a class of exponential functions.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Since last few decades, there are so many epidemic models have been solved by non-integer order derivatives. Recently some applications of non-integer order derivatives in mathematical epidemiology can be seen from [7,8,9,10,11]. There are so many research papers have been come to study the outbreaks of coronavirus, in which some are [12,13,14,15,16,17,18,19,20,21].…”
Section: Introductionmentioning
confidence: 99%
“…Atangana and Alqahtani [42] studied the Caputo fractional derivative for analysis of the spread of river blindness disease. Furthermore, the idea of fractional derivatives was examined by Gomez and Atangana [43] with the power law and the Mittag-Leffler kernel applied to the non-linear Baggs-Freedman model, while Muhammad and Atangana [44] examined for dynamics of Ebola disease, and Khan et al [45] studied the analytical solution of the hyperbolic telegraph equation, using the natural transform decomposition method. Some other related references dealing with fluid motion, heat transfer, or fractional derivatives are given in [46][47][48][49][50][51][52][53].…”
Section: Introductionmentioning
confidence: 99%