2008
DOI: 10.1002/app.28024
|View full text |Cite
|
Sign up to set email alerts
|

Dynamic mechanical and thermal properties of PE‐EPDM based jute fiber composites

Abstract: The present investigation deals with the mechanical, thermal and viscoelastic properties of ternary composites based on low density polyethylene (LDPE)-ethylene-propylene-diene terpolymer (EPDM) blend and high density polyethylene (HDPE)-EPDM blend reinforced with short jute fibers. For all the untreated and compatibilizer treated composites, the variation of mechanical and viscoelastic properties as a function of fiber loading (10, 20 and 30 wt %) and compatibilizer concentration (1, 2, and 3%) were evaluated… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
31
0
3

Year Published

2010
2010
2017
2017

Publication Types

Select...
7
1
1

Relationship

0
9

Authors

Journals

citations
Cited by 48 publications
(35 citation statements)
references
References 46 publications
1
31
0
3
Order By: Relevance
“…This effect was more pronounced in case of modified fiber composites where the attractive forces between polybenzoxazine molecules greatly reduced resulting in further lowering of T g .The amplitude of tan d peak is also increased with incorporation of fibers. The result could be interpreted that for untreated composite the poor interfacial bonding between fiber and matrix tend to dissipate more energy, showing high magnitude of tan d (damping peak) in comparison to the neat resin[21][22][23]. In polymer/fiberFig.…”
mentioning
confidence: 88%
“…This effect was more pronounced in case of modified fiber composites where the attractive forces between polybenzoxazine molecules greatly reduced resulting in further lowering of T g .The amplitude of tan d peak is also increased with incorporation of fibers. The result could be interpreted that for untreated composite the poor interfacial bonding between fiber and matrix tend to dissipate more energy, showing high magnitude of tan d (damping peak) in comparison to the neat resin[21][22][23]. In polymer/fiberFig.…”
mentioning
confidence: 88%
“…O tamanho da partícula do pó da concha deve ser levado em consideração, como também a sua interação com a matriz, por serem fatores importantes no comportamento mecânico destes compósitos. Segundo Kar e Khatua [17], quanto menor o tamanho da partícula mais efetiva é a sua atuação como reforço para os compósitos. Outra consideração importante é a presença de aglomerados de partículas fracamente ligadas, principalmente no compósito 80:20(Figura 5c).…”
Section: Análise Morfológica (Mev)unclassified
“…Pode-se sugerir que a concha atuou reforçando a matriz de PEAD. A presença de partículas atuando como reforço em matrizes poliméricas tem sido reportada por outros autores [15,[17][18][19][20][21] usando zeolita, hidroxiapatita, fibras, talco, argilas, etc, sendo esse aumento da rigidez atribuído a maior transferência de força aplicada a matriz para as partículas [22][23][24][25]. Alguns autores [20,21,23] estudaram o efeito do tratamento superficial de partículas de celulose, partículas de talco com silano no módulo de armazenamento dos compósitos, obtendo melhoramento considerável, por exemplo, Abdelmouleh et al [20,21] atribuíram este efeito às interações entre o silano e os monômeros das resinas poliéster insaturado e epóxi.…”
Section: Análise Termo Dinâmico Mecânica (Dma)unclassified
“…Damping materials fall into four categories: (i) materials exhibiting high loss modulus but low loss tangent (such as cast iron, metal-matrix composites [6][7][8], shape-memory alloys [9][10][11][12] and acrylic impregnated ceramics [13]), (ii) materials exhibiting high loss tangent but low loss modulus (such as rubber and other polymers [14,15]), (iii) materials exhibiting low values of both loss tangent and loss modulus (such as quartz particle filled epoxy [16], short carbon fiber filled nylon [17], interpenetrating polymer networks [18], hot-compacted polyethylene/polypropylene [19] and short jute fiber filled polymer blend [20]), Graphite network cement-matrix composite [21] 9.26 0.811 7.502 2.47 Nanoscale Cu-Al-Ni shape-memory alloy [9] 22.06 0.196 4.43 0.93 Tungsten (95%) with In-Sn [9] 161 0.05 8.1 0.63 Acrylic impregnated ceramic [13] 60 0.04 2.4 0.31 Quartz particle filled epoxy [16] 3 0.15 0.45 0.26 Short carbon fiber filled nylon [17] 13 0.05 0.7 0.2 Hot-compacted polyethylene/polypropylene [19] 5.4 0.083 0.45 0.19 Interpenetrating polymer networks [18] 0.13 0.3 0.040 0.11 Short jute fiber filled polymer blend [20] 1 0.1 1 0.1…”
Section: Emerging Materials For Dampingmentioning
confidence: 99%