Background
Hay fever is a highly prevalent, heterogenous, and multifactorial disease. Patients may benefit from longitudinal assessments using mobile health (mHealth) principles. We have previously attempted to establish an effective mHealth platform for patients with hay fever through AllerSearch, our in-house smartphone app that assesses electronic patient-reported outcomes through a questionnaire on hay fever and provides evidence-based advice. To be used by the public, an investigation on its reliability and validity is necessary.
Objective
The aim of this paper is to assess the reliability and validity of subjective symptom data on hay fever collected through our app, AllerSearch.
Methods
This study used a prospective observational design. The participants were patients aged ≥20 years recruited from a single university hospital between June 2, 2021, and January 26, 2022. We excluded patients who could not use smartphones as well as those with incomplete data records and outlier data. All participants answered the Japanese Allergic Conjunctival Disease Standard Quality of Life Questionnaire (JACQLQ), first in the paper-and-pencil format and subsequently on AllerSearch on the same day. The JACQLQ comprises the following three domains: Domain I, with 9 items on ocular or nasal symptoms; Domain II, with 17 items on daily activity and psychological well-being; and Domain III, with 3 items on overall condition by face score. The concordance rate of each domain between the 2 platforms was calculated. The internal consistency of Domains I and II of the 2 platforms was assessed using Cronbach alpha coefficients, the concurrent validity of Domains I and II was assessed by calculating Pearson correlation coefficients, and the mean differences between the 2 platforms were assessed using Bland-Altman analysis.
Results
In total, 22 participants were recruited; the data of 20 (91%) participants were analyzed. The average age was 65.4 (SD 12.8) years, and 80% (16/20) of the participants were women. The concordance rate of Domains I, II, and III between the paper-based and app-based JACQLQ was 0.78, 0.85, and 0.90, respectively. The internal consistency of Domains I and II between the 2 platforms was satisfactory (Cronbach alpha of .964 and .919, respectively). Pearson correlation analysis yielded a significant positive correlation between Domains I and II across the 2 platforms (r=0.920 and r=0.968, respectively). The mean difference in Domains I and II between the 2 platforms was 3.35 units (95% limits of agreement: –6.51 to 13.2).
Conclusions
Our findings indicate that AllerSearch is a valid and reliable tool for the collection of electronic patient-reported outcomes to assess hay fever, contributing to the advantages of the mHealth platform.