2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2013
DOI: 10.1109/embc.2013.6609613
|View full text |Cite
|
Sign up to set email alerts
|

Droplet backside exposure for making slanted SU-8 microneedles

Abstract: This paper presented a droplet backside exposure (DBE) method for making slanted microneedle structures on a flexible polymer substrate. To demonstrate the feasibility of the DBE approach, SU-8 microneedle arrays were fabricated on polydimethylsiloxane (PDMS) substrates. The length of the microneedles was controlled by tuning the volume of the SU-8 droplet, utilizing the wetting barrier phenomenon at a liquid-vapor-hydrophilic surface-hydrophobic surface interface. The experimental results showed excellent rep… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2013
2013
2018
2018

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 11 publications
0
1
0
Order By: Relevance
“…As described in Figure 2 , (1) a 3-inch glass wafer was cleaned and put through a dehydration bake, and a ~50 μm SU-8 (SU-8 3025, MicroChem Corp, MA, USA) layer was spun onto the wafer and patterned as the mock LEDs; (2) A thin layer of PDMS was spun onto the SU-8 master to create cavities matching the shape of the LED; (3) After the PDMS was cured for 40 min at 95°C, PR was patterned on the PDMS substrate to expose 7 mm-diameter circles, followed by oxygen plasma treatment to convert the exposed hydrophobic areas to hydrophilic ones; (4) After removal of the PR mask, ~45 μL SU-8 (SU-8 3005) was dispensed on top of the plasma treated PDMS surface using a micropipette; and (5) patterned with a backside droplet backside exposure (DBE) method that utilizes the height variance in a dome-shaped SU-8 structure to create out-of-plane microneedles of varying lengths (Kwon et al, 2013a , 2014b ); (6) After SU-8 development, the array was polished by O 2 plasma etching; (7) DC sputtering of a 0.1-μm-thick ITO layer was performed in a Kurt Lesker Axiss PVD System, followed by deposition of 5 μm Parylene-C. Then a 0.2-μm-thick Au layer was deposited in the thermal evaporator, and the tip of the waveguide was chemically etched for light delivery, followed by deposition of 5 μm Parylene-C as a protective layer. The Parylene-C film at the tip of the optrode was removed using reactive-ion etching (RIE); and (8) The optrode array then was released from the glass wafer, and the microneedles with the matched LED cavities were aligned onto the corresponding LEDs.…”
Section: Methodsmentioning
confidence: 99%
“…As described in Figure 2 , (1) a 3-inch glass wafer was cleaned and put through a dehydration bake, and a ~50 μm SU-8 (SU-8 3025, MicroChem Corp, MA, USA) layer was spun onto the wafer and patterned as the mock LEDs; (2) A thin layer of PDMS was spun onto the SU-8 master to create cavities matching the shape of the LED; (3) After the PDMS was cured for 40 min at 95°C, PR was patterned on the PDMS substrate to expose 7 mm-diameter circles, followed by oxygen plasma treatment to convert the exposed hydrophobic areas to hydrophilic ones; (4) After removal of the PR mask, ~45 μL SU-8 (SU-8 3005) was dispensed on top of the plasma treated PDMS surface using a micropipette; and (5) patterned with a backside droplet backside exposure (DBE) method that utilizes the height variance in a dome-shaped SU-8 structure to create out-of-plane microneedles of varying lengths (Kwon et al, 2013a , 2014b ); (6) After SU-8 development, the array was polished by O 2 plasma etching; (7) DC sputtering of a 0.1-μm-thick ITO layer was performed in a Kurt Lesker Axiss PVD System, followed by deposition of 5 μm Parylene-C. Then a 0.2-μm-thick Au layer was deposited in the thermal evaporator, and the tip of the waveguide was chemically etched for light delivery, followed by deposition of 5 μm Parylene-C as a protective layer. The Parylene-C film at the tip of the optrode was removed using reactive-ion etching (RIE); and (8) The optrode array then was released from the glass wafer, and the microneedles with the matched LED cavities were aligned onto the corresponding LEDs.…”
Section: Methodsmentioning
confidence: 99%