Phylogenenetic relationships of the superfamily Tephritoidea (Diptera: Tephritidae) were reanalysed based upon four mitochondrial gene fragments (12S, 16S, cytochrome c oxidase I and cytochrome c oxidase II) from 53 tephritoid (10 families) and 30 outgroup (14 families) species. The data set of Han and Ro (Mol Phylogenet Evol, 39, 2005, 416) was expanded in terms of the number of taxa as well as molecular characters. We were able to sample the enigmatic families Ctenostylidae and Eurygnathomyiidae for the first time. Based on increased taxon sampling (from 49 to 83 species) and additional sequences (combined length of DNA fragments increased from 2451 to 4490 bp), the inferred phylogenetic trees suggest a number of interesting phylogenetic relationships, some of which were not recovered from the previous study. Some of the important findings are as follows: (1) monophyly of the superfamily Tephritoidea; (2) all the included tephritoid families except for Tephritidae were recovered as monophyletic groups; (3) Tephritoidea can be divided into two monophyletic groups – the Piophilidae Family Group (Pallopteridae, Circumphallidae?, Lonchaeidae, Piophilidae and Eurygnathomyiidae) and the Tephritidae Family Group (Richardiidae, Ulidiidae, Platystomatidae, Tephritidae, Ctenostylidae and Pyrgotidae); (4) Eurygnathomyiidae is recognized as an independent monophyletic family apart from Pallopteridae; (5) the enigmatic family Ctenostylidae is a member of the superfamily Tephritoidea; (6) parasitic Pyrgotidae + Ctenostylidae + Tachiniscinae and mostly phytophagous Tephritidae are recovered within a monophyletic group; and (7) according to an inferred chronogram, the first Tephritoidea might have evolved around the middle of Paleocene Epoch [~59 Million years ago (mya)] and the family Tephritidae around the late Eocene (~36 mya).