2022
DOI: 10.1016/j.combustflame.2022.112351
|View full text |Cite
|
Sign up to set email alerts
|

Development of skeletal oxidation mechanisms for linear alcohols from C4 to C10 based upon reaction rate rules

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 37 publications
0
1
0
Order By: Relevance
“…The skeletal reduction deletes the unimportant species and reactions by one or a combination of the following methods: (1) directed relation graph (DRG) [10], (2) DRG with error propagation (DRGEP) [11], (3) path flux analysis (PFA) [12], (4) revised DRG [13], and (5) CSP [14]- [17]. The timescale based reduction identifies the global quasi-steady-state species on the basis of good experience by one or a combination of the following methods: (1) CSP [18], [19], (2) QSS approximation [20], (3) intrinsic low dimensional manifold (ILDM) [21] and other methods [22][23][24].…”
Section: Introductionmentioning
confidence: 99%
“…The skeletal reduction deletes the unimportant species and reactions by one or a combination of the following methods: (1) directed relation graph (DRG) [10], (2) DRG with error propagation (DRGEP) [11], (3) path flux analysis (PFA) [12], (4) revised DRG [13], and (5) CSP [14]- [17]. The timescale based reduction identifies the global quasi-steady-state species on the basis of good experience by one or a combination of the following methods: (1) CSP [18], [19], (2) QSS approximation [20], (3) intrinsic low dimensional manifold (ILDM) [21] and other methods [22][23][24].…”
Section: Introductionmentioning
confidence: 99%