Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
<div class="section abstract"><div class="htmlview paragraph">Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced. Trial production of the coatings with different linear expansion coefficients was conducted, and the sensitivity of the linear expansion coefficient and adhesion strength was obtained. Consequently, the adhesion strength was found to have a maximum value with respect to the linear expansion coefficient. By contrast, the surface observation of this coating after the honing process showed an increase in surface porosity. The martensitic content in the coating was reduced, and the appropriate martensitic content and chemical composition with the optimal corrosion resistance, adhesion strength, and surface porosity were found. Using this coating (0.01C-12Cr-0.22Ni-0.35Mn), the corrosive wear at the top dead center was resolved. Consequently, the fuel economy was improved by more than 4% compared with that of the current VC-Turbo engine, which has already adopted a carbon-steel-based coating.</div></div>
<div class="section abstract"><div class="htmlview paragraph">Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced. Trial production of the coatings with different linear expansion coefficients was conducted, and the sensitivity of the linear expansion coefficient and adhesion strength was obtained. Consequently, the adhesion strength was found to have a maximum value with respect to the linear expansion coefficient. By contrast, the surface observation of this coating after the honing process showed an increase in surface porosity. The martensitic content in the coating was reduced, and the appropriate martensitic content and chemical composition with the optimal corrosion resistance, adhesion strength, and surface porosity were found. Using this coating (0.01C-12Cr-0.22Ni-0.35Mn), the corrosive wear at the top dead center was resolved. Consequently, the fuel economy was improved by more than 4% compared with that of the current VC-Turbo engine, which has already adopted a carbon-steel-based coating.</div></div>
<div class="section abstract"><div class="htmlview paragraph">Mo-free 1.6-GPa bolt was developed for a Variable Compression Turbo (VC-Turbo) engine, which is environment friendly and improves fuel efficiency and output. Mo contributes to the improvement of delayed fracture resistance; therefore, the main objective is to achieve both high strength and delayed fracture resistance. Therefore, Si is added to the developed steel to achieve high strength and delayed fracture resistance. The delayed fracture tests were performed employing the Hc/He method. Hc is the limit of the diffusible hydrogen content without causing a delayed fracture under tightening, and He is the diffusible hydrogen content entering under a hydrogen-charging condition equivalent to the actual environment. The delayed fracture resistance is compared between the developed steel and the SCM440 utilized for 1.2-GPa class bolt as a representative of the current high-strength bolts. Owing to delayed fracture test, Hc/He of developed steel is 49.1 (Hc:3.39 ppm, He:0.069 ppm), and that of SCM440 is 4.14 (Hc:1.16 ppm, He:0.028 ppm). In the microstructure of the developed steel, cementite is dispersed by the addition of Si, and the film-like carbides that precipitated at the grain boundaries, causing delayed fracture, are suppressed. Therefore, Hc of the developed steel is higher than that of SCM440. Moreover, adding Si reduces the hydrogen diffusion rate; hence, the He of the developed steel is less than that of 1.2-GPa class bolt. Thus, we developed a novel 1.6-GPa tensile strength bolt that achieved higher hydrogen embrittlement resistance than the current high-strength bolt.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.