The molecular-level motions of a coronene-based supramolecular rotator are amplified into macroscopic changes of crystals by co-assembly of coronene and TCNB (1,2,4,5-tetracyanobenzene) into a charge-transfer complex. The as-prepared cocrystals show remarkable self-healing behavior and thermo-mechanical responses during thermally-induced reversible single-crystal-to-single-crystal (SCSC) phase transitions. Comprehensive analysis of the microscopic observations as well as differential scanning calorimetry (DSC) measurements and crystal habits reveal that a thermally-reduced-rate-dependent dynamic character exists in the phase transition. The crystallographic studies show that the global similarity of the packing patterns of both phases with local differences, such as molecular stacking sequence and orientations, should be the origin of the self-healing behavior of these crystals.