1957
DOI: 10.1103/revmodphys.29.74
|View full text |Cite
|
Sign up to set email alerts
|

Description of States in Quantum Mechanics by Density Matrix and Operator Techniques

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
886
0
18

Year Published

2000
2000
2017
2017

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 1,861 publications
(928 citation statements)
references
References 29 publications
2
886
0
18
Order By: Relevance
“…In the discussion below, we refer to these internal states as "spin states", although the same formalism applies to non-spin degrees of freedom, such as quantized rotational and vibrational states. We extend the Wigner function by combining it with the density operator formalism commonly used in the quantum description of magnetic resonance 8 . The definition of the Wigner function is extended by projecting the density operator onto the spin-state specific position state |x, η⟩, where η = α, β , .…”
Section: Extended Wigner Functionsmentioning
confidence: 99%
“…In the discussion below, we refer to these internal states as "spin states", although the same formalism applies to non-spin degrees of freedom, such as quantized rotational and vibrational states. We extend the Wigner function by combining it with the density operator formalism commonly used in the quantum description of magnetic resonance 8 . The definition of the Wigner function is extended by projecting the density operator onto the spin-state specific position state |x, η⟩, where η = α, β , .…”
Section: Extended Wigner Functionsmentioning
confidence: 99%
“…First, I( p) and I tot are not unfamiliar expressions. The quantity i (p i − 1/n) 2 is one of the class of measures of the concentration of a probability distribution given by Uffink (1990), and Fano (1957), for example, remarks that Tr(ρ 2 ) can serve as a good measure of information; furthermore, the relation expressed in eqn. (2.5) has previously been employed by Larsen (1990) in discussing exact uncertainty relations.…”
Section: Brukner and Zeilinger's 'Total Information Content'mentioning
confidence: 99%
“…Если задан один лишь оператор плотности ρ S в от-сутствие дополнительной физической информации (что достаточно для вычисле-ния всех необходимых вероятностей), то невозможно вычленить привилегированное разложение оператора ρ S , коэффициенты которого можно интерпретировать как эпистемические вероятности. В связи с этим некоторые авторы считают, что интер-претация смесей в терминах незнания несостоятельна (см., например, [6]- [9]). Дру-гие авторы, наоборот, считают, что концептуальные неоднозначности, возникающие из неоднозначной разложимости квантовых смесей, появляются за счет ограничен-ных возможностей технического языка описания КМ, на котором невозможно вы-разить некоторые физически значимые особенности рассмотрения (см., например, [10], [11]).…”
Section: Introductionunclassified