1978
DOI: 10.1002/maco.19780291203
|View full text |Cite
|
Sign up to set email alerts
|

Der Einfluß der Umgebung auf die Rißzähigkeit und Rißausbreitung bei höherfesten Stählen

Abstract: Kurzfassung Es wird das Rij3zahigkeitsverhalten von vier Feinkornbaustuhlen und einem hochfesten Spannstahl mit unterschiedlicher Vergutung in einer NaC1-Losung mil 3 Gew.% in Abhangigkeit von der elektrochemischen Polarisation untersucht. Die Stahle haben handelsiibliche Zusammensetzungen, ihre Festigkeiten liegen zwischen 635 und 1460 N / m m 2 . A n DCB-Proben rnit Anrifl werden die kritischen Spannungsintensitatsfaktoren KISCC fur langsames Rij3wachstum beim Ruhepotential wie bei kathodischer und bei anodi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

1985
1985
2012
2012

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 12 publications
(2 citation statements)
references
References 5 publications
0
2
0
Order By: Relevance
“…13) Therefore, factors corresponding to delayed fracture property such as critical stress for delayed fracture, fracture time and KISCC were evaluated as a function of, for instance, baking time after hydrogen charging, 14) hydrogen pressure, 15,16) potential 17) and current density 18) of electrochemical hydrogen charging. Though the mechanism of delayed fracture is not clarified, yet, and the direct influence of diffusible hydrogen content on delayed fracture is still controversial [19][20][21] in spite of the extensive studies of delayed fracture, 19,[22][23][24][25][26][27] critical diffusible hydrogen content for delayed fracture, HC, has been proposed as a parameter to evaluate the susceptibility to delayed fracture [28][29][30][31] according to the recent progress of quantitative measurement of hydrogen content in steels.…”
Section: Introductionmentioning
confidence: 99%
“…13) Therefore, factors corresponding to delayed fracture property such as critical stress for delayed fracture, fracture time and KISCC were evaluated as a function of, for instance, baking time after hydrogen charging, 14) hydrogen pressure, 15,16) potential 17) and current density 18) of electrochemical hydrogen charging. Though the mechanism of delayed fracture is not clarified, yet, and the direct influence of diffusible hydrogen content on delayed fracture is still controversial [19][20][21] in spite of the extensive studies of delayed fracture, 19,[22][23][24][25][26][27] critical diffusible hydrogen content for delayed fracture, HC, has been proposed as a parameter to evaluate the susceptibility to delayed fracture [28][29][30][31] according to the recent progress of quantitative measurement of hydrogen content in steels.…”
Section: Introductionmentioning
confidence: 99%
“…In fracture mechanics investigations, too, it has been observed that not only with cathodic polarisation but also with anodic polarisation hydrogen-induced fracture mechanisms exist [13]. Even at passive steels in aqueous alkaline solutions hydrogen evolution has been proved experimentally as the result of the cathodic partial reaction of the dissolution of passive iron [14].…”
Section: Introductionmentioning
confidence: 98%