2022
DOI: 10.1016/j.msea.2021.142332
|View full text |Cite
|
Sign up to set email alerts
|

Deformation-driven modification towards strength-ductility enhancement in Al–Li–Mg–Zn–Cu lightweight high-entropy alloys

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(3 citation statements)
references
References 25 publications
0
2
0
Order By: Relevance
“…For example, Al 80 -Zn 5 -Mg 5 -Li 5 -Cu 5 (at. %) alloys exhibit high tensile strength (674 MPa) and tenable ductility (7.5%) [ 14 , 17 ]. By further increasing the content of Zn element and slightly adjusting that of other elements, the compressive strength of Al 80 -Zn 14 -Mg 2 -Li 2 -Cu 2 (at.…”
Section: Introductionmentioning
confidence: 99%
“…For example, Al 80 -Zn 5 -Mg 5 -Li 5 -Cu 5 (at. %) alloys exhibit high tensile strength (674 MPa) and tenable ductility (7.5%) [ 14 , 17 ]. By further increasing the content of Zn element and slightly adjusting that of other elements, the compressive strength of Al 80 -Zn 14 -Mg 2 -Li 2 -Cu 2 (at.…”
Section: Introductionmentioning
confidence: 99%
“…[4][5][6][7][8] HEA refers to an alloy composed of five or more elements with equiatomic ratio or close to equiatomic ratio, and the content of each principal element is between 5 and 35 at%. [9,10] HEAs exhibit many attractive physical and mechanical properties, including high hardness and strength, [11][12][13] excellent oxidation resistance, [14] corrosion resistance, [15] biocompatibility, [16] and soft magnetic, [17] attribute primarily to the four "core effects" of high-entropy materials: [18] the high entropy effect in thermodynamics, the slow diffusion effect in kinetics, the serious distortion effect in lattice structure, and the cocktail effect in properties. On the one hand, the number of literatures dealing with the tribological behaviors of HEAs illustrates an increasing interest since the early 2005, as shown by the rising number of publications per year (Figure 1).…”
Section: Introductionmentioning
confidence: 99%
“…7.62 亿元,其中稀土储氢材料是目 前唯一可以实现大规模商用化的储氢材料,市场规 模为 6.9 亿元,占比为 90.55%;其他储氢材料市场 规模为 0.72 亿元,占比为 9.45%[12] ] ,2020 年,我国 磁性材料产业生产及销售的磁性材料约有 1.3×10 6 t, 其中软磁材料为 2.9×10 5 t;预计到 2025 年,软磁材 料 的 生 产 及 销 售 将 达 到 4.89×10 5 t, 市 场 规 模 为 150元素为主,如 Al 80 Li 5 Mg 5 Zn 5 Cu 5 铝 基高熵合金密度为 2.88 g/cm 3 ,具有良好的综合力 学性能,抗拉强度为 674 MPa,塑性为 7.5%[14] 。低 密度轻质高熵合金一般指密度介于钛合金和钢的高 熵合金。这类合金通常以 Ti 元素作为主要元素,与 超低密度轻质高熵合金相比表现出更好的综合力学 性能,如(Zr 0.5 Ti 0.35 Nb 0.15 ) 80 Al 20 合金密度低于6 g/cm3 ,屈 服强度高达 1800 MPa,具有 8% 的延伸率[15] 区间具有远超现有的 Inconel-718 与 Haynes-230 镍 基 高 温 合 金 的 屈 服 强 度[16] 。 VNbMoTaW 合 金 在 1600 ℃的屈服强度超过 400 MPa;同时,该合金经 过 1400 ℃、19 h 的长时间退火,仍可以保持体心立 方结构的 Fe 40 Ni 20 Co 20 Cr 20 高熵合金[18] ,该合金 的抗拉强度超过 600 MPa,断裂塑性达到 70%;在 0.1 mol/L 的 H 2 SO 4 溶液环境中,多种元素产生协同 表面制备了 FeCoCrAlNi 高熵合金涂层[20] ,涂层的 硬度是原基体合金的 3 倍。在 3.5 wt.% NaCl 溶液中 的腐蚀试验结果表明,FeCoCrAlNi 高熵合金涂层 能有效提高合金的耐腐蚀性能和抗点蚀性能。利用 激光熔覆技术在 Ti-6Al-4V 表面制备 TiZrAlNbCo 涂 层[21] ,结果表明,该涂层不仅能够有效提高合金 的硬度,还使该合金在 3.5 wt.% NaCl 溶液的腐蚀 电流密度降低为 3.66×10 −9 A/cm 2 。利用磁控溅射技 术制备的一种成分均匀的单相 FCC 高熵合金涂层 FeAlCuCrCoMn[22] ,其电化学实验结果表明,该涂 层材料在 3.5 wt.% NaCl 和 5 wt.% NaOH、10 wt.% H 2 SO 4 溶液中的耐腐蚀性能均优于 201 不锈钢。涂 67 Zr 21.67 Hf 21.66 Ta 35 具 有良好的生物相容性,杨氏模量为 93 GPa,屈服强 度达到 1050 MPa,断裂延伸率为 12.7%,具有较好的…”
unclassified