Image augmentation is the most recognized type of data augmentation and intrinsic development for transforming image diversities in the training dataset that belongs to a similar class as the novel image. In the area of image augmentation handling, a collection of operations is shifting, flipping, zooming, cropping, rotation, and transformation in color space. A wide range of applications frequently used the aspects of deep learning are industry, science, and government domain, namely adaptive testing, image classification, computer vision, object detection, and face recognition and has achieved substantial development and accomplishment of deep learning. This study concentrates on the most important challenges present in the image estimation level that have a significant effect on dimension reduction, pooling, and edge detection. The deep learning methods involved here are convolution neural network (CNN), generative adversarial network (GAN), and deep convolution neural network (DCNN). Finally, a comparative study has performed a massive literature survey on various deep learning models.