Caffeoyl derivatives exhibit antiinflammatory and antioxidant effects. However, the effect of 3,4,5-tricaffeoylquinic acid on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in keratinocytes that may be involved in skin diseases has not been studied. In this respect, we investigated the effect of 3,4,5-tricaffeoylquinic acid on TRAIL-induced apoptosis in human keratinocytes. 3,4,5-Tricaffeoylquinic acid and oxidant scavengers attenuated the decrease in the cytosolic levels of Bid, Bcl-2, and survivin proteins; the increase in the levels of cytosolic Bax, p53, and phosphorylated p53; the increase in the levels of phosphorylated p38; the increase in the mitochondrial levels of the voltage-dependent anion channel; loss of the mitochondrial transmembrane potential; the release of cytochrome c; activation of caspases (8, 9, and 3); cleavage of poly [ADP-ribose] polymerase-1; production of reactive oxygen species; the depletion of glutathione (GSH); nuclear damage; and cell death in keratinocytes treated with TRAIL. These results suggest that 3,4,5-tricaffeoylquinic acid may reduce TRAIL-induced apoptosis in human keratinocytes by suppressing the activation of the caspase-8 and Bid pathways and the mitochondria-mediated cell death pathway. The effect appears to be associated with the inhibitory effect on the production of reactive oxygen species and depletion of GSH. 3,4,5-Tricaffeoylquinic acid appears to be effective in the prevention of TRAIL-induced apoptosis-mediated skin diseases.