Robotic Systems - Applications, Control and Programming 2012
DOI: 10.5772/25827
|View full text |Cite
|
Sign up to set email alerts
|

CPG Implementations for Robot Locomotion: Analysis and Design

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2014
2014
2018
2018

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 44 publications
0
1
0
Order By: Relevance
“…Furthermore, CPGs have become a suitable alternative to nonbiologically inspired methods for locomotion systems of nonwheeled robotic platforms [6]; this is due to several and interesting features of CPGs such as adaptability, rhythmicity, stability and variety [7]. The CPG-based locomotion systems have been successfully designed and implemented at software and/or hardware levels for different nonwheeled robotic platforms [8] such as walking robots (biped [9], quadruped [10], hexapod [11] and octopod [12]), swimming robots [13], flying robots [14]), among others (i.e., snake robots [15] and salamander robots [16]). Although vast amount of works made and reported in the state of the art about CPG-based locomotion systems, there is not a general and standard methodology to build CPGs [6]; however, working with CPGs commonly involves the following three phases [7]: (1) choosing the processing unit model, the coupling type and the connectivity topology (modeling and analysis), (2) dealing with parameter tuning, usually solved by optimization methods and gait transition, to handle variation on gaits as type or frequency (modulation) and (3) executing the designed CPG at the software and/or hardware level (implementation).…”
Section: Introductionmentioning
confidence: 99%
“…Furthermore, CPGs have become a suitable alternative to nonbiologically inspired methods for locomotion systems of nonwheeled robotic platforms [6]; this is due to several and interesting features of CPGs such as adaptability, rhythmicity, stability and variety [7]. The CPG-based locomotion systems have been successfully designed and implemented at software and/or hardware levels for different nonwheeled robotic platforms [8] such as walking robots (biped [9], quadruped [10], hexapod [11] and octopod [12]), swimming robots [13], flying robots [14]), among others (i.e., snake robots [15] and salamander robots [16]). Although vast amount of works made and reported in the state of the art about CPG-based locomotion systems, there is not a general and standard methodology to build CPGs [6]; however, working with CPGs commonly involves the following three phases [7]: (1) choosing the processing unit model, the coupling type and the connectivity topology (modeling and analysis), (2) dealing with parameter tuning, usually solved by optimization methods and gait transition, to handle variation on gaits as type or frequency (modulation) and (3) executing the designed CPG at the software and/or hardware level (implementation).…”
Section: Introductionmentioning
confidence: 99%