Our system is currently under heavy load due to increased usage. We're actively working on upgrades to improve performance. Thank you for your patience.
2012
DOI: 10.1007/s00894-012-1546-5
|View full text |Cite
|
Sign up to set email alerts
|

Conformational entropy of a polymer chain grafted to rough surfaces

Abstract: A polymer molecule (represented by a statistical chain) end-grafted to a topologically rough surface was studied by static MC simulations. A modified self-avoiding walk on a cubic lattice was used to model the polymer in an athermal solution. Different statistical models of surface roughness were applied. Conformational entropies of chains attached to uncorrelated Gaussian, Brownian, and fractional Brownian surfaces were calculated. Results were compared with the predictions of a simple analytical model of a m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2013
2013
2018
2018

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 25 publications
0
1
0
Order By: Relevance
“…The knowledge of the Helmholtz free energy A (or Gibbs free energy G) of a polymer is essential for understanding many complex processes involving macromolecules, as for instance, the adsorption or grafting of polymer chains on interfaces [16], the formation of polymer bridges [7, 8] or protective layers in processes of flocculation or steric stabilization of colloidal suspensions [8, 9], the formation of secondary and tertiary structure of proteins [1012], the release of the genetic material from the viral capsids [1316] and many others. However, in such complex processes as those mentioned above, it is not possible to analytically compute the changes in the free energy and, particularly, in its component—the conformational entropy.…”
Section: Introductionmentioning
confidence: 99%
“…The knowledge of the Helmholtz free energy A (or Gibbs free energy G) of a polymer is essential for understanding many complex processes involving macromolecules, as for instance, the adsorption or grafting of polymer chains on interfaces [16], the formation of polymer bridges [7, 8] or protective layers in processes of flocculation or steric stabilization of colloidal suspensions [8, 9], the formation of secondary and tertiary structure of proteins [1012], the release of the genetic material from the viral capsids [1316] and many others. However, in such complex processes as those mentioned above, it is not possible to analytically compute the changes in the free energy and, particularly, in its component—the conformational entropy.…”
Section: Introductionmentioning
confidence: 99%