This research aimed to compare the performance of ten machine learning algorithms for detecting kidney disease, utilizing data from UCI Machine Learning Repository. The algorithms tested included K-Nearest Neighbour, RBF SVM, Linear SVM, Neural Net, Decision Tree, Naïve Bayes, AdaBoost, Random Forest, Gaussian Process, and QDA. The evaluation metrics used were accuracy, precision, recall, and F1-score. The findings revealed that AdaBoost was the most effective algorithm for all evaluation metrics, achieving an accuracy, precision, recall, and F1-score of 1.00. Random Forest and RBF followed closely, while Naïve Bayes and QDA had the lowest performance. These results suggest that machine learning algorithms, especially ensemble methods such as AdaBoost, can significantly improve the accuracy and efficiency of detecting kidney disease. This can lead to better patient outcomes and reduced healthcare costs.