Comparative Analysis of Kidney Disease Detection Using Machine Learning
MOHAMMAD DIQI,
I WAYAN ORDIYASA,
MARSELINA ENDAH HISWATI
Abstract:This research aimed to compare the performance of ten machine learning algorithms for detecting kidney disease, utilizing data from UCI Machine Learning Repository. The algorithms tested included K-Nearest Neighbour, RBF SVM, Linear SVM, Neural Net, Decision Tree, Naïve Bayes, AdaBoost, Random Forest, Gaussian Process, and QDA. The evaluation metrics used were accuracy, precision, recall, and F1-score. The findings revealed that AdaBoost was the most effective algorithm for all evaluation metrics, achieving an… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.