1977
DOI: 10.1007/bf00915197
|View full text |Cite
|
Sign up to set email alerts
|

Coherence and the radiation laws

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
2
0
2

Year Published

1978
1978
2013
2013

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 23 publications
(4 citation statements)
references
References 163 publications
0
2
0
2
Order By: Relevance
“…The phase transition is experimentally evidenced by, among other effects, the narrowing of the emission in energy and momentum space. The counterpart in Fourier space of the energy and momentum narrowing is, by the Wiener-Khinchin identity [15][16][17], an extended spatial and temporal coherence in real space [17,18], which explains why the appearance of such coherence in both resonantly [19] and non-resonantly [2,20] created condensates has been investigated as a fingerprint of condensation. In particular, the pioneering work of Baas et al [19] shows for the first time that a very extended spatial coherence can be achieved in an OPO condensate.…”
Section: Introductionmentioning
confidence: 99%
“…The phase transition is experimentally evidenced by, among other effects, the narrowing of the emission in energy and momentum space. The counterpart in Fourier space of the energy and momentum narrowing is, by the Wiener-Khinchin identity [15][16][17], an extended spatial and temporal coherence in real space [17,18], which explains why the appearance of such coherence in both resonantly [19] and non-resonantly [2,20] created condensates has been investigated as a fingerprint of condensation. In particular, the pioneering work of Baas et al [19] shows for the first time that a very extended spatial coherence can be achieved in an OPO condensate.…”
Section: Introductionmentioning
confidence: 99%
“…Initial studies [3,20,21] have been performed by non-resonantly pumping the microcavity, and in such cases the resulting distribution of the population at the bottom of the lower polariton branch is subjected to fluctuations due to the reservoir of particles at the bottleneck. These fluctuations, broadening the distribution of polaritons in energy and momentum space, translate, according to the Wiener-Khinchin identity [22,23], into a faster decay of the temporal and spatial coherence. Although analogous broadening by the fluctuating population of pump polaritons can occur in the OPO [17], the threshold pump density (P T h ) for a resonantgain process is much lower than that for non-resonant gain and the effect of the reservoir polaritons is not relevant, since the reservoir is either completely empty or very weekly occupied.…”
Section: Introductionmentioning
confidence: 99%
“…Для излучения в отсутствие источников «го можно записать в виде (см., например, 1а ) 93 , где уравнения переноса выводились при самых разнообразных исходных пред-положениях). Фактически сущность всех этих методов состоит в том, что уравнение Бете -Солпитера решается в приближении геометрической опти-ки в предположении о квазиоднородности функции когерентности поля Г. В конечном итоге это позволяет ввести содержательные понятия локального •спектра (17) и яркости излучения (21); при этом яркость / будет удовлетворять уравнению переноса (53). Существенно, что при таком подходе метод геоме-трической оптики применяется не к отдельным реализациям поля, а лишь к уравнению для средней по ансамблю величины -функции когерентности.…”
Section: л -а -апресян ю а кравцовunclassified
“…Описанный только что подход позволяет перейти от строгого уравнения Бете-Солпитера (57) к обычному уравнению переноса излучения (53), выразив одновременно коэффициент экстинкции а и сечение рассеяния еди-ницы объема а через статистические параметры, фигурирующие в волновой теории -явный вид этих параметров зависит от используемой модели среды.…”
Section: л -а -апресян ю а кравцовunclassified