Lakes in the Mediterranean region experience an altered hydrological balance with large water level reductions and/or fluctuations within and between years. To date, little is known about the reaction of invertebrate assemblages inhabiting the littoral zone to water level changes in natural lakes. Here, we present the case of the volcanic Lake Bracciano, one of the largest and deepest Italian lakes. We compared the numerical composition and taxonomic richness of plant-associated invertebrate assemblages sampled from three sites and three depth ranges (0-4 m, 4-8 m and 8-15 m) between years with different water levels. Using historical data, we built a hydrological balance model to assess the role of different water budget components on the water levels. The hydrological balance showed that the volume of water currently abstracted for human use exceeds the potential changes caused by the projected warming of climate and decreasing amount of precipitation by nearly an order of magnitude. In a low water level year, littoral macrophytes and invertebrate assemblages exhibited qualitative and quantitative differences at all sampling sites and depths. The invertebrate assemblage showed a reduced taxonomic richness and lower numerical abundance of the more sessile forms (water mites, gastropods, nematodes, naidid oligochaetes), which feed directly on living plants or epiphytic algae, and an increase of more mobile and/or detritivore taxa