2020
DOI: 10.1016/j.jclepro.2020.120644
|View full text |Cite
|
Sign up to set email alerts
|

China’s population spatialization based on three machine learning models

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
34
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 36 publications
(35 citation statements)
references
References 65 publications
0
34
0
1
Order By: Relevance
“…High spatial resolution population data is necessary to obtain reliable exposure evaluation results at the intra-urban scale. The commonly used methods for population spatialization include areal weighting, dasymetric mapping, and statistics regression models [40,41]. In this study, residential buildings were screened and classified on the basis of high-resolution remote sensing images.…”
Section: Comprehensive Discussionmentioning
confidence: 99%
“…High spatial resolution population data is necessary to obtain reliable exposure evaluation results at the intra-urban scale. The commonly used methods for population spatialization include areal weighting, dasymetric mapping, and statistics regression models [40,41]. In this study, residential buildings were screened and classified on the basis of high-resolution remote sensing images.…”
Section: Comprehensive Discussionmentioning
confidence: 99%
“…La inteligencia artificial, podría ayudarnos a cuantificar las redes comerciales productor-consumidor a nivel global y así conocer el impacto de la ciudad en el campo. En relación al incremento de áreas urbanas, numerosos estudios combinan datos, que incluyen imágenes a partir de drones, aviones o satélites, con inteligencia artificial para elaborar mapas urbanos precisos, diseñar redes de abastecimiento, predecir la expansión del territorio urbano (Khryashchev et al 2018;Grekousis 2019;Li et al 2019;Oh et al 2020;Phan et al 2020;Wang et al 2020b; Ghaffarian y Emtehani 2021) o ayudar en la planificación urbana (Arribas-Bel et al 2019;He et al 2020;Xue et al 2020;Zhao et al 2020).…”
Section: Variables Socio-económicas En El Estudio De La Desertificaciónunclassified
“…As the largest populated and most active economic development country, China's vast population provides a large consumer market with more business opportunities for enterprises 5 8 . However, overpopulation negatively influences natural resources, the ecological environment, and global climate change 9 , 10 .…”
Section: Introductionmentioning
confidence: 99%