Faced with dual challenges of “carbon neutral” and emission control, fossil fuel-based internal combustion engines need to explore new ways and technical paths to reduce harmful emissions and Carbon dioxide emissions simultaneously. Fuel injection process is playing a significant role not only in traditional engines but also in new low/zero carbon engines. Multi-hole nozzles have a wide range of applications in the fuel supply system. While the accepted spray study work and jet break-up models are usually developed under the quasi-steady-state of fuel injection by a single-hole nozzle. There are rare models that can describe the whole break-up processes of multi-hole nozzle spray, including complex internal flow factors, plume interaction, and the effect of start/end of injection. In this chapter, characteristics of spray morphology, evolution processes, and evaporation characteristics, emerging from the practical diesel multi-hole nozzles, were discussed and analyzed during the transient injection processes in detail. Moreover, the relationship between multi-hole nozzle internal flow properties and the corresponding spray behaviors was investigated by numerical simulation method systematically. Therefore, multi-hole spray modeling processes under engine operating conditions and the optimized design of diesel multi-hole nozzles are expected to get some benefits and clues from the current results.