2011
DOI: 10.1063/1.3548432
|View full text |Cite
|
Sign up to set email alerts
|

Characterization of Boron Contamination in Fluorine Implantation using Boron Trifluoride as a Source Material

Abstract: Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/h… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2012
2012
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 9 publications
0
2
0
Order By: Relevance
“…Because of the variables z ex and z sp , the apparent mass is not limited to discrete values but can take values from a continuous range. Equation (3), therefore, is appropriate to describe tails of peaks in a mass spectrum, such as the Al tail in Figure 4 in the next section or to model contamination problems where the charge exchange occurs in section [Src-Ex] [8].…”
Section: Apparent Mass Conceptmentioning
confidence: 99%
See 1 more Smart Citation
“…Because of the variables z ex and z sp , the apparent mass is not limited to discrete values but can take values from a continuous range. Equation (3), therefore, is appropriate to describe tails of peaks in a mass spectrum, such as the Al tail in Figure 4 in the next section or to model contamination problems where the charge exchange occurs in section [Src-Ex] [8].…”
Section: Apparent Mass Conceptmentioning
confidence: 99%
“…The simultaneous implantation of unwanted ions with the same mass to charge ratio as the desired ion species might appear to be a manageable contamination risk, but it is only a special case. When ions undergo a charge exchange or dissociate between the ion source and the analyzer magnet, surprising contamination issues may arise [6][7][8]. This paper illustrates by means of mass spectrum analysis (which is not only essential in order to check which elements are present in the ion source) that charge exchange events and dissociation processes between the ion source and the analyzer magnet of an implanter are fairly common.…”
Section: Introductionmentioning
confidence: 96%