In this study, catalytic and noncatalytic pyrolysis of Prosopis juliflora biomass was carried out in a fluidized bed reactor. This study highlights the potential use of forestry residues with waste eggshells under a nitrogen environment. The experiments were conducted to increase the yield of bio-oil by changing the parameters such as pyrolysis temperature, particle size, and catalyst ratio. Under noncatalytic pyrolysis, a maximum bio-oil yield of 40.9 wt% was obtained when the feedstock was pyrolysed at 500°C. During catalytic pyrolysis, the yield of bio-oil was increased by up to 16.95% compared to the noncatalytic process due to the influence of Ca-rich wastes on devolatilization behavior. In particular, the existence of alkali and alkaline-earth metals present in eggshells might have positive effects on the decomposition of biomass material. The bio-oil obtained through catalytic pyrolysis under maximum yield conditions was analyzed for its physical and chemical characterization by Fourier transform infrared (FT-IR) spectroscopy and gas chromatography mass spectroscopy (GC-MS).