2020
DOI: 10.1039/d0ra02181d
|View full text |Cite
|
Sign up to set email alerts
|

Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer

Abstract: Enhanced output performances of a triboelectric nanogenerator (TENG) are achieved by optimizing the high-dielectric-constant filler content in the electrification layer and decreasing its thickness.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
70
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 118 publications
(77 citation statements)
references
References 47 publications
1
70
0
1
Order By: Relevance
“…For this reason, the thickness of wood used in our work is much higher compared with that of more conventional triboelectric materials. 42,43 This weakens the electrostatic induction effect, reducing the electrical output.…”
Section: Llmentioning
confidence: 99%
“…For this reason, the thickness of wood used in our work is much higher compared with that of more conventional triboelectric materials. 42,43 This weakens the electrostatic induction effect, reducing the electrical output.…”
Section: Llmentioning
confidence: 99%
“…In the present era, the development of a sustainable and flexible energy harvester that harvests energy from listed mechanical sources to power electronics and nanosystems is attaining huge attention [1,2]. Nanogenerators provide a pathway towards sustainable power sources due to their superior characteristics of easy, less cost fabrication, mass production, improved energy conversion efficiency [3,4]. Currently, the quest is to develop flexible nanogenerators working on principles of piezoelectricity [5] and triboelectricity [6].…”
Section: Introductionmentioning
confidence: 99%
“…Key words: inorganic filler; composite film; surface property; electrical property; output power density; triboelectric nanogenerator; review 摩 擦 纳 米 发 电 机 (Triboelectric Nanogenerator, TENG)自 2012 年被首次报道以来, 迅速受到科研人 员的广泛关注 [1] 。TENG 是基于摩擦起电和静电感 应的耦合作用, 将诸如人体运动 [2] 、风能 [3][4] 和水波 能 [5][6] 等日常生活中的低频机械能转化成电能并收 集起来加以利用的器件。与其他能量收集技术相比, TENG 具有可使用材料广泛、制造简单、成本低廉、 安全性高等优势。 目前, TENG 已被证明在柔性自供 能传感器、可穿戴设备和智能机器人等应用领域具 有极大的潜力 [7][8][9][10] 。但是, TENG 存在输出功率密度 较低的缺点, 这是阻碍 TENG 广泛应用的主要因素 之一。影响 TENG 输出性能的因素有很多, 例如摩 擦层材料的性能、TENG 的器件结构以及测量的环 境条件等。其中, 摩擦层材料的表面性能以及电学 性能是决定摩擦电器件表面电荷密度大小的关键因 素。目前, 研究人员常用聚对苯二甲酸乙二醇酯 (PET)、 聚二甲基硅氧烷(PDMS)、 聚偏氟乙烯(PVDF) 以及聚四氟乙烯(PTFE)等高分子聚合物材料作为 TENG 的介电摩擦层。虽然这些材料本身具有良好 的摩擦电性能 [11] , 但是为了追求更高的输出功率密 度, 研究人员探索了各种方法, 包括摩擦层材料表面 功能化 [12][13] 、表面图案化 [14][15] 以及微纳米结构构筑 [16] 等以扩大 TENG 的实际应用范围。 尽管以上这些方法有效地提高了摩擦层材料在 工作过程中的表面电荷密度, 优化了 TENG 器件的 输出性能, 但是受限于材料本身的性质, 器件的输 出性能难以进一步提升, 这极大地限制了 TENG 的 应用范围。为了解决这一问题, 设计制备复合材料 作为 TENG 介电摩擦层的研究开始不断涌现 [17][18][19] [20][21][22][23][24][25][26][27] Fig. 1 Schematic diagram of various composite films and devices for TENGs [20][21][22][23][24][25][26][27] 了各种优化摩擦层材料表面性能的技术, 例如表面 氟硅烷化 [32] 、硅模板倒膜 [33] 、光刻 [34] 、等离子体刻 蚀 [14] [3...…”
unclassified
“…1 Schematic diagram of various composite films and devices for TENGs [20][21][22][23][24][25][26][27] 了各种优化摩擦层材料表面性能的技术, 例如表面 氟硅烷化 [32] 、硅模板倒膜 [33] 、光刻 [34] 、等离子体刻 蚀 [14] [37][38] 。而引入填料 为静电纺丝法制备多样的纳米纤维结构带来了更多 的可能性 [39] 。例如, 西安交通大学 Chen 等 [40] 通过 [20] ; 海绵状 TiO 2 /PDMS 的 TENG 器件示意图, TiO 2 /PDMS 薄膜光催化原理图(b) [21] ; 静电纺丝制备分层结构 SiO 2 /P(VDF-TrFE) 复合薄膜的 SEM 照片以及纯 P(VDF-TrFE)膜(蓝色)和 SiO 2 /P(VDF-TrFE)复合薄膜(红色)的表面电势对比(c) [40] Fig. 2 Schematic diagram of rGONRs /PVDF based TENG, 3D-AFM image of the rGONRs/PVDF thin film, and output voltage of the rGONRs/PVDF based TENG for 500 cycles (a) [20] , schematic diagram of TiO 2 /PDMS sponge based TENG, schematic of organic containment degradation by photocatalyst NPs in TiO 2 /PDMS sponge (b) [21] , and SEM images of hierarchical structures for SiO 2 /P(VDF-TrFE) composite fabricated by electrospinning process, and the surface potentials of pure P(VDF-TrFE) film (blue) and SiO 2 /P(VDF-TrFE) composite film (red) (c) [40] (Colorful figures are available on website) 与材料的介电性能之间的关系为 [42] [43] , SrTiO 3 [44] , ZnSnO 3 [45] )。上海交通大学 Shi 等 [22] [22] ; 不同 BaTiO 3 含量的 PVDF 复合薄膜介电常数以及所组成器件表面电荷 密度对比图(b) [23] ; ZnSnO 3 @PDMS 复合薄膜的表面扫描电镜照片及其不同含量时的输出电流与电压曲线(c) [24] Fig. 3 Dielectric constants of the cellulose/ BaTiO 3 aerogel paper with different BaTiO 3 contents (the mass ratios of BaTiO 3 in C/BT-1, C/BT-3 and C/BT-5 were 50%, 75% and 83.3%, respectively) and schematic image of wireless application of the TENG(a) [22] , dielectric constants and charge densities of the BaTiO 3 /PVDF nanocomposite films with different BaTiO 3 volume fractions (b) [23] , a...…”
mentioning
confidence: 99%
See 1 more Smart Citation