2018
DOI: 10.1515/jib-2018-0021
|View full text |Cite
|
Sign up to set email alerts
|

BioModelKit – An Integrative Framework for Multi-Scale Biomodel-Engineering

Abstract: While high-throughput technology, advanced techniques in biochemistry and molecular biology have become increasingly powerful, the coherent interpretation of experimental results in an integrative context is still a challenge. BioModelKit (BMK) approaches this challenge by offering an integrative and versatile framework for biomodel-engineering based on a modular modelling concept with the purpose: (i) to represent knowledge about molecular mechanisms by consistent executable sub-models (modules) given as Petr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 39 publications
0
1
0
Order By: Relevance
“…Besides, Blätke et al [69, 70] briefly discussed the use of ColPNs to represent a 3 D lattice of space, which can be fitted with a topological 3 D model of an entire cell. In their approach, they simulate biochemical reactions in a reaction–diffusion system with the help of a localization component.…”
Section: Applicationsmentioning
confidence: 99%
“…Besides, Blätke et al [69, 70] briefly discussed the use of ColPNs to represent a 3 D lattice of space, which can be fitted with a topological 3 D model of an entire cell. In their approach, they simulate biochemical reactions in a reaction–diffusion system with the help of a localization component.…”
Section: Applicationsmentioning
confidence: 99%